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The purpose of this paper is to review and to extend, wherever possible, the Kramers- 
Kronig relations, sum rules, and symmetry properties for the electrodynamic transport 
tensors of a linear plasma medium. For complete generality, we consider both non- 
relativistic and relativistic plasmas with and without external magnetic fields. Our 
study is carried out first within the framework of classical electrodynamics. We then 
exploit the statistical-mechanical fluctuation-dissipation theorem to farther obtain 
the Onsager symmetry relations and Kubo sum-rule frequency moments. Of special 
significance is the emergence of a variety of new Kramers-Kronig formulae and f-sum 
rules for the inverse dispersion tensor. 
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1. I N T R O D U C T I O N  

The conductivity, dielectric, and inverse dispersion tensors are the fundamental  
t ranspor t  coefficients which por t ray  the linear response o f  a plasma to a small external 
perturbing agency. Our  first objective is to review and to extend, wherever possible, 
the Kramer s -Kron i g  formulas,  sum rules, and symmetry properties for  these coeffi- 
cients. Our  second goal is to review the equilibrium fluctuation-dissipation theorem 
(FDT)  applied to classical plasmas and to analyze the consequences o f  the relations 
ensuing f rom this theorem for  the t ransport  coefficients. The relations which we 
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present are general, inasmuch as they are formulated for both nonrelativistic 
and relativistic plasmas with and without constant external magnetic fields. The 
motivation for this analysis lies in the central role played by the dielectric function 
in the description of plasma phenomena. Since the pioneering work of Nozi6res 
and Pines) 1~) Rukhadze and Silin, ab) and Englert and Brout)  ~e) it is now 
well understood that the frequency- and wave-number-dependent dielectric function 
incorporates a tremendous amount of information relevant in a wide range of physical 
effects (excitation of collective modes, energy loss of a test particle, scattering and 
absorption of electromagnetic waves, etc.), influences the structure of the plasma 
kinetic equation, and determines, via the pair correlation function, the equilibrium 
properties of the system. An understanding of the symmetry and analytic properties 
and of the interrelations among the transport coefficients is an indispensible asset in 
the algebraic manipulations, and these properties are of considerable interest them- 
selves. The relations become rather intricate in the event the plasma is situated in an 
external magnetic field, where the dielectric and associated functions assume their 
full tensor character. It is in this connection, in particular, that we list results which 
have not been reported previously. 

In many cases, the link between the quantity of primary physical interest and the 
dielectric function is provided by the fluctuation-dissipation theorem. This latter has, 
of course, a long history, both in its equilibrium version, first pronounced by 
Nyquist, I~a) Callen and Welton) ~b) and Kubo, (~e) and in its nonequilibrium variant, 
which was formulated by Rosenbluth and Rostoker, Isa) and Klimontovich and 
Silin) 3b/ It is the nonequilibrium FDT which is of special importance in plasma 
physics, partly because of the great variety of nonequilibrium phenomena prevalent 
in plasmas, partly because the equilibrium theorem does not allow for a clear sepa- 
ration of electronic and ionic contributions even in equilibrium. Nevertheless, in 
this paper, we restrict ourselves to the discussion of the equilibrium theorem. We have 
several reasons for doing so. First, it is the equilibrium theorem that can be formulated 
in full generality, without evoking any perturbation-theoretic approach; moreover, 
the understanding of its range of validity and of its limitations yields the paradigm 
for the nonequilibrium theorem. Second, in equilibrium phenomena, it has, obviously, 
an interest of its own. Finally, the derivation of the nonequilibrium theorem would 
necessitate an entirely different approach, which would definitely be out of place in 
this paper. 

Broadly speaking, this paper is divided into two parts. The first part surveys our 
objective mostly within the framework of classical electrodynamics. (~b,4-9~ Here, we 
start with the "vacuum" and "medium" forms of Maxwell's equations together with 
the causul constitutive relations for a plasma. A comparison of these two forms ~ 

For a phenomenological description of plasmas, see NeufeldJ TM Neufeld writes the constitutive 
plasma equations in the form P = %~E + c~,~B, M = c~m,E + c~mB, where E is the electric intensity, 
B the magnetic induction, P and M the electric and magnetic polarizations, and c~,o, c~,., c~,~,, and 
c~,.~ the appropriate transport coefficients. He expressly notes that the constitutive relations differ 
markedly from the following relations for molecular media: P = xeE, M = x.~B, where x, and x,~ 
are the electric and magnetic susceptibilities. Our analysis shows that no such distinction should 
be made. 
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then results in the definition of the dielectric tensor. (lb,8,1~ This tensor is Hermitian 
if the medium is nonabsorbing. (lb,s) The generalized Kramers-Kronig formulas and 
subsequent sum rules that these objects obey follow from the usual analyticity 
arguments posed for plus functions. (4,7) 

In the second part, we use the powerful statistical-mechanical method of  
Kubo (2e,13-~) to develop the fluctuation-dissipation theorem for classical non- 
relativistic and relativistic equilibrium plasmas. In formulating the Hamiltonian 
including interaction, the state of the unperturbed (equilibrium) system is understood 
to be the combined state of the collection of plasma particles and electromagnetic 
field (see, e.g., Refs. 16). For  generality, the small external perturbing agency is cast 
in the form of a vector potential containing both the longitudinal and transverse 
components of the field? It is shown that the relationship between the external 
conductivity (connecting the external electric-field perturbation to the current density 
of  the plasma particles) and current correlation tensors is the same for nonrelativistic 
and relativistic plasmas. Finally, the FDT is used to formulate the well-known 
Onsager symmetry relations (m and a set of sum-rule frequency moments for each of  
the relevant electrodynamic response functions. We shall then see that the lowest- 
order moment of each such set corresponds to a particular sum rule reported in the 
first part of this paper. 

We remark that, for the derivation of the sum rules in Section 2, we have exploited 
the Onsager symmetry relations, which would imply an equilibrium hypothesis. 
However, the Onsager relations are, in fact, equally valid for homogeneous, stationary, 
nonequilibrium systems. 

2. E L E C T R O D Y N A M I C S  O F  R E S P O N S E  F U N C T I O N S  

Section 2 is divided into three subsections. In the first, the definitions of the 
dielectric, permeability, and conductivity tensors are established by comparing the 
"vacuum" and "medium" forms of  Maxwell's equations. Then, a variety of response 
functions are catalogued and several among these are chosen for subsequent analysis 
in this paper; we also consider the physical significance of the transport coefficients 
in the process of power absorption by the plasma medium. The second and third 
subsections feature analyticity properties for the selected transport coefficients, their 
subsequent Kramers-Kronig relations, and sum rules. 

The survey in this section is carried out mainly within the framework of classical 
electrodynamics, but with little reference to the evolution of the particle dynamics. 
Analysis and discussion of further relations depending on the actual particle dynamics 
is deferred to Section 3. 

2.t .  The Dielectric, Permeabi l i ty ,  Electric and Magnetic Polarizabil i ty,  
and Conductivity Tensors 

The electrodynamics of material media are conveniently described in terms of  
the total electric field intensity E, the magnetic induction B, the electric induction D, 

3 See also Ref. 15, pp. 446-449 for the linear response of a quantum-mechanical system to a vector 
potential as a perturbing agency. 
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and the magnetic field strength H. We adopt E and B as primary quantities. The 
relation between E and B, on the one hand, and D and H on the other, is, in general, 
fairly involved. In the present discussion, however, our basic assumption is that this 
relation is linear--which is certainly true for "weak" fields--permitting us to define 
proportionality factors which will be our fundamental entities. 

We furthermore limit ourselves to an extended ("infinite") medium, homo- 
geneous in space and stationary in time. The natural representation of physical variables 
in such a medium is in terms of  Fourier transforms. The convention we adopt in 
this paper is the following: Let f ( r ,  t) be any function of space and time andf(k ,  co) 
its Fourier transform. Then 

f f  f(k, co) = d3r [exp i (oJt  -- k -  r)]f(r ,  t) (1) 
--~0 " L 3 

where L 3 is the large, but bounded volume of the system, and, in the inverse transform, 
the summation is made over the admissible set of discrete k-vectors. 

Dielectric and Diamagnetic Tensors, Electric and Magnetic Polariza- 
bilities. The electric induction D at a given space-time point (r, t) depends not 
only on the value of  the total electric field intensity E at (r, t), but also on the value 
of  E throughout the medium and at all previous times. In view of the linear approx- 
imation, the appropriate constitutive relation is written in the convolution form ab~ 

f f' D(r, t) = d~r ' d t '  ~(r - -  r ' ,  t - -  t ' ,  Bo) �9 E(r', t') 
L z --oe 

(2) 

where ~(r -- r', t -- t', Bo) is the dielectric tensor of the medium. 4 Similarly, the 
magnetic field strength H and the magnetic induction B are assumed to be connected 
by the constitutive relation 

i f' H(r, t) =- d3r ' dr '  v(r -- r', t -- t', B0)" B(r', t') (3) 

where v(r -- r', t -- t', B0), is the inverse of the customary permeability tensor, and 
can be called the diamagnetic tensor of the medium. We have already exploited the 
fact that the medium is spatially homogeneous, by setting the kernels of  (2) and (3) 
to depend on (r, r') through the difference (r -- r'). Equation (2) already implies the 
profound notion of causality, which states that the effect D(r, t) cannot precede the 
cause E(r', t'). An alternative description is expressed by incorporating the causality 
condition into ~ and v: 

e(r -- r', t - -  t ',B0) = 0 (2a) 

v(r -- r', t - -  t', B0) ~ 0 for t < t '  (3a) 

4 If not otherwise stated, the plasma is specified to be in a constant external magnetic field. The 
existence of this field is referred to by inserting its symbol, B0, into the argument of the transport 
coefficient. 
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Then, clearly, the time integration in (2) and (3) can be extended to t ' = + ov 
without changing the values of the integrals. Exploiting this fact, the Fourier-trans- 
formed linear constitutive relations for a homogeneous plasma will be 

D(k, o J) = r co, Bo)" E(k, co) (4) 

H(k, co) = v(k, co, Bo)" B(k, co) (5) 

The electromagnetic behavior of the plasma can be described in two completely 
equivalent ways. (s) One first writes down the "vacuum" form of Maxwell's equations 
and expresses the total charge and current densities as (p + fi) and (j + j), respectively, 
where t~ and j are external sources and p and j are due to the plasma particles. 5 
Next, one writes down Maxwell's equations for polarizable media by considering 
only fi and j as sources of the fields. The dielectric and diamagnetic tensors are then 
understood to implicitly contain the effects of the plasma particles. Upon comparing 
the "vacuum" and "medium" equations, one finds that 

k X {g(k, co, Bo). [k x E(k, w)]} + (w2/c2)a(k, co, B0). E(k, co) -= i/xooJj(k , co) (6) 

k -  [a(k, co, B0)" E(k, co)] = (i/%)p(k, co) (7) 

where 

a ( k ,  ~ ,  Bo) = E(k, ~ ,  Bo) - -  1, g (k ,  o~, Bo) = , , (k ,  o~, Bo) - -  1 

are the electric and magnetic polarizabilities, respectively. Equation (6) serves to 
define the dielectric and permeability tensors, 6 but this definition is not unambigous. 
Projecting out transverse and longitudinal contributors to the polarizabilities 

"(1 TT aTL~ 
a ~ (aLr ~LL! (8) 

etc., the lack of uniqueness appears in connection with the transverse polarizabilities. 
The reason for this is that, while the longitudinal polarizability is uniquely determined 
by the longitudinal current (a charge density), the transverse current carries the 
responsibility for both the transverse electric polarizability and the magnetic polar- 
izability. To remove this ambiguity and in order to determine {rr and arr, an 
additional condition is needed, and it is usually postulated (s) to be one of the three 
possibilities: 

ar r  = 0, ~rr :~ 0 (9a) 

aTT = aLLT, ~rr :/: 0 (9b) 

= 0, a ~T ~ 0 (9c) 

In this paper, we adopt the MKS system of units. 
Remark that Eqs. (6) and (7) are not independent, because of the continuity equation for the 
charge density. 
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In (9a), it is clear that a is essentially longitudinal (a LL, am', a rL @ 0) and the 
pure transverse effects are contained in ~. Postulate (9b) is used most frequently in 
electrodynamics. Here, the difference between the longitudinal and transverse effects 
is incorporated into {. Moreover, the form of the relationship between D and E 
is essentially the sa me for both longitudinal and transverse components. In (9c), the 
magnetic polarizability is set equal to zero, so that the the transverse responsibilities 
are shifted to a. Here, a contains the .full transverse and longitudinal effects. 

One obtains the following relation between {rr  as calculated from (9a) and 
a r r  as calculated from (9c): 

k • {rr  • k ----- (coZ/c2)ct Tr (10) 

Or, if { r r  is calculated from (9b), then (10) is modified to read 7 

k x U T x k = (o ,2/c~)(aT~- ~LLT) (11) 

While the concept of the permeability corresponds better to the actual physical 
situation, the use of a single quantity, the dielectric tensor, simplifies the calculations, 
so that the latter choice is usually preferred. Thus, setting ~ = 0, Eqs. (6) and (7) 
can be contracted into the form 

a(k, o,, Bo)" E(k, o~) ---- (i/~o~0)j(k, o~) (12) 

In this paper, Eq. (12) is taken to be the appropriate definition of the dielectric 
~ensor/8a~ and (10) that of the magnetic polarizability. 

Conduct iv i t ies .  An equally important quantity is the conductivity ~. The 
induced current j(r, t) is assumed to be connected to the total electric field E by the 
linear spatial-temporal convolution form of Ohm's law: 

j (L ~,) = a(k, co, B0)" E(k, ~o) (13) 

An "external" conductivity ~ can also be definedS: 

j(k, o,) = ~(k, ~o, B0)" ~(k, o~) (14) 

where l~(k, co) is the external electric field determined by external sources (i.e., the 
field in the absence of plasma particles). Note that both a and ~ are causal in the 
same way as ~. This will be discussed in some detail further on. The notion of the 
external conductivity is crucial to the development of the FDT, for it is 6, and not o, 
which is related to the response of the system to the external perturbing agency. 

Comparison of (13) with (12) yields the following relation between ~ and a: 

o(k, ~ ,  Bo) = - - i ~ o a ( k ,  ~ ,  ~o) 05)  

When there is no external magnetic field (B0 = 0), then our Eq. (1) reduced to Lindhard's Eq. (1.6) 
in Ref. 10; see also Ref. lb, Eq. (2.22). 
See, for example, Ref. 13b, p. 282, Eq. (11.43). 
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D ispers ion  T e n s o r .  A further, fundamentally important quantity is the 
dispersion tensor 

D(k, co, Bo) --  n~T -- E(k, co, Bo) (16) 

where n = kc/co is the index of refraction of the medium. In free space, D becomes 

A : n2Y -- 1 (17) 

which is essentially the wave operator. 
The quantities E, a (or v and {), o, and b are "response functions" in the sense 

that they determine the response (D, j) of the system to an external perturbation 
(E, I~). By considering the physical quantities which could play the role of  a "driving" 
quantity and those which could be regarded as ,,responding," one can catalogue the 
appropriate response functions as in Table I. Note that we have also featured E as a 
driving quantity in order to include Ohm's law (13) and the linear constitutive relation 

s co) = a(k, ~,  B0)" E(k, ~o) (18) 

From (13), (14), and the causal relation connecting E and ~;, one can show that 

~ ( k ,  co, 13o) = c~(k, co, Bo) �9 D-~ (k ,  co, Bo) �9 A (19) 

or, equivalently, 

o - l ( k ,  ~o, Bo) - -  e - l ( k ,  co, Bo) : -  (~/~oco) A-~ (20) 

If, in the causal relation relation connecting E and j, one sets ~ = 0, the resulting 
equation will possess nontrivial solutions only if (Ref. 18, pp. 10-12; Ref. 19, pp. 20, 
29, 31): 

J D(k, ~k)i : 0 (21) 

which is the, by now, widely familiar, plasma dispersion relation, determining the 
spectrum co = c% of  collective oscillations. 

Table I. Electrodynamic Response Functlons ~ 

j (p) a .  D-1 ( _  aLL~eLL) ~ 0 

= E -- 1~ (~L) (i/%~) D -t" a " A -~ 0-1.  a (__~LL/ELL) a 

E (E L) (i/%) D-Z/co (--i/%~e LL) D -1" A (1/e LL) "I 
i | l l | l  

~' Parenthetical expressions denote corresponding uncoupled longitudinal terms when B0 = 0. 
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If  there is no external magnetic field, the dielectric tensor is diagonal and (21) 
splits into the two independent dispersion relations [Ref. 19, p. 21, Eqs. (31.70)]: 

eLL(k, Wk) ~- 0 ( 2 2 )  

err(n, n(oJ)) = n 2 (23) 

Dissipation and Hermit ic i ty .  In general, E(k, oJ, Bo), v(k, co, Bo), o(k, co, B0), 
etc. are complex quantities. In order to demonstrate the physical significance of the real 
and imaginary parts, one is led to consider the process of power absorption by the 
plasma (Ref. 18, pp. 104-106, 126-131; Ref. 20). The spectral density of power 
absorption in an externally driven plasma is given by 

R(k, co) ~ Re{E*(k, co). o(k, co, Bo)" E(k, co)} 

E*(k, co). a"(k, co, Bo)" E(k, co), 
a v = �89 + a*), 

(24) 

since only the real part of the product contributes to the total energy. This, in turn, 
immediately implies that the Hermitian part of c~ (or the anti-Hermitian part of ~) 
originates from the dissipative character of the medium. In an ideal lossless medium, cr 
is anti-Hermitian (as e is Hermitian). Similar conclusions can be shown to apply to 6. 
In a freely oscillating system (oscillating with the complex frequency co k ~ v k + i?/k , 
appropriate for the wave vector k) a properly defined spectral energy density W(k) 
and the density of power absorption are expected to be linked by the relation 

2ykW(k ) =- --R(k), R(k) = R(k, c%) (25) 

This implies that, for slight damping, the suitable expression for the spectral energy 
density is 

while 

- -  i E*(k)" (-~-~-),~k- E(k) W(k) = W(k) + ~ 

e 0 ! 

---- - f  E*(k) �9 ~ [coe~(k, co)]- E(k) ~=.k + ~/x0 B*(k) �9 B(k) 

eo E*(k) e E(k) , = 2--g �9 ~ [o~V(k,  o~)1. ~=,k (26) 

W(k) = W(k, vk) 

W(k, ,o) = �89 o~). r(k, ~o) + ~fflB*(k, ~o). B(k, 0,) (27) 

is the vacuum expression for the spectral energy density. 
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Fig. 1. Causal diagram. 

2.2. Analyticity and the Kramers-Kronig Relations 

The causality conditions [see, for example Eqs. (2a), (3a)] for the transport 
coefficients in the t-domain lead to important consequences with respect to their 
analytic behavior in the co-plane. These and their subsequent Kramers-Kronig 
relations have been discussed at some length by Landau and Lifshitz, (4a,b) Pines, (Ta,b~ 
Mar t in#  ) and others. In laying the groundwork for our study, it seems to be most 
convenient to regard the ordinary conductivity as being the primary object, and we 
shall first derive its Kramers-Kronig relations. The analyticity properties of cr together 
with (15) then lead successively to the corresponding analyticity properties and 
Kramers-Kronig formulas for cz, D-l/co (and, consequently, A-l/co), a �9 D -z, and ~ .  

The causal diagram in Fig. 1 is presented to show how the different transport 
coefficients are interrelated. Note that an arrow points from a "cause" to an "effect" 
[see, for example, Eqs. (13) and (14)]. 

Conductivity. We start from Ohm's law for the ordinary conductivity in a 
spatially homogeneous plasma: 

j0c, t) = d ~ ( k ,  %B0).E(k,  t - -  T) (28) 
0 

No current can flow at the moment of inception of the E-field 9 (at t '  = - - ~  or at 
-r = t -- t '  = + oo), so that cr(k, ~- = o% B0) = 0. Since there is no finite E-field 
capable of inducing infinite current, it follows that cr(k, r, B0) must be bounded. 
Hence, the integral 

( "  d~- a(k, r, B9) ~ or(k, co = 0, Bo) (29) 
o O 

The validity of this statement is not quite obvious, since j and E are not independent of each other. 
A careful analysis of the requirements involved has recently been given (see Ref. 9). It seems that 
the truth of this assumption should not be questioned for a classical plasma. 
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must  also be bounded,  s~ Then, regarding a(k,  co, B0) as a function of  the complex 
variable to = to' -? ito", we can write 

f 
~ 

a(k,  to' @ i to", B0) = d~- (exp ito%-)(exp --00%-) a(k,  % B0) (30) 
0 

Since the integral (29) is bounded  and since the factor  e -~ enhances the convergence 
of  the integral (29), it follows that  (30) also converges. Hence,  a ( k ,  to, B0) must  be 
single-valued and regular  in the upper-hal f  co-plane including to ---- 0. (~a,b) Moreover ,  
o ( k ,  to, Bo) has  no singularities on the real axis. By definition, any function of  the 
real variable to whose analytic cont inuat ion on the upper -ha l f  co-plane is analytic is a 
plus function. Therefore,  

f a(k,  co, Bo) ~ a+(k, to, Bo) = dto'  3+(co - -  to') a(k,  co', Bo) (31) 
--oo 

Equat ion (31) can be restated in the fo rm 

f ~  alto' a(k, to, Bo) = __i ~ ~ ~o' a(k, to', Bo) 
77" --oo t o  

(32) 

where ~ denotes the Cauchy principal part .  Then, denoting the real and imaginary 
parts  of  e by a '  and a", respectively, one readily obtains the K r a m e r s - K r o n i g  relations 
f rom (32) 

a ' (k ,  to, B0) - -  1 ~ dto' 
~r ~ _~ to - -  co' a"(k, to', B0) (33a) 

F a"(k,  to, B o ) =  + __1 ~ dto' , 
~r ~ - ~  to _ to, a 'O~,  co, Bo) (33b) 

E l ec t r i c  P o l a r i z a b i l i t y .  To  obtain the corresponding formulas  for  the 
polarizabil i ty a, one can simply use (15) to replace a in (33a, b) by a. One immediately  
obtains  

f f a"(k, to, B0) - -  1 do)' a ' (k,  to', B0) _1_ _1 ~ dto'_ - , a ' (k,  to', B0) (34a) 
7) '60  _ ~  "/7". --oo t o  - -  t o  

f a '(k,  co, Bo) - -  1 ~ dto' 
7r -~  to to, a"(k, co', Bo) (34b) 

Then, f rom the K r a m e r s - K r o n i g  relation 

o'(k, to = o, Bo) = ! dto' o"(k, to', B0) 
' ~  --ce OJ" 

f ~  E~ dto' a ' (k ,  co', B0) 
"IT --oo 

10 In Appendix A, we discuss the w -+ 0 behavior of ~, a ,  and D -z for the following plasma models: 
(a) Warm, collisionless electron plasma. (m (b) Cold, collisional ion-electron plasma with constant 
collision frequency and fixed scattering centers (see Ref. 18, p. 21). (c) Freely drifting, cold, colli- 
sional ion-electron plasma with constant collision frequency. (22) 
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we can write (34a) as ~ 

f ~  a'(k, co, Bo) = 1 _  a'(k, co = 0, Bo) + 1 ~ dco' ct'(k, co', Bo) 
EOco 7"/" _ ~  60 - -  cot 

(34c) 

Equations (34b, c) reveal that the modified polarizability 

a(k ,  co, Bo) - ( i /%co)~(k,  co = 0, B0) (35) 

is a plus function. The analytic behavior of a over the entire upper half-plane including 
the real axis has already been established; apparently, different considerations apply 
to the electric polarizability a. The reason for this is that the longitudinal dc con- 
ductivity of a plasma (which is a conducting medium) is expected to be finite. Cor- 
respondingly, the longitudinal polarizability should have a pole at co = 0: This will 
profoundly affect the analytic behavior of o7 z. However, whether an actual expression 
at hand for ~LL indeed behaves in this fashion depends on how sound the model 
espoused for the calculation is in the co ---- 0 frequency range; clearly, no collisionless- 
plasma model can claim to be correct in this region, and, thus, expressions, for ~ZL 
calculated from the collisionless Vlasov equation will not be encumbered by this 
pathological behavior; in general, however, only (35) can be a candidate for Kramers-  
Kronig relations. The nonlongitudinal elements of  a might or might not have a 
singularity at co = 0 (see footnote 10); since the dc transverse field does not have a 
clear physical meaning, one cannot evoke the previously employed argument without 
further qualifications. In the k -+ 0 limit, however, e r r  and a LL should be identical 
and exhibit the same singularity. A higher-order singularity should emerge in a rT  

in the case of magnetically polarizable media [~(w ---- 0) @ 0]; this is a consequence 
of (10). Classical equilibrium plasmas are, however, not magnetically polarizable, 
and the subtraction procedure according to (35) will be satisfactory for any element 
of a. 

We note that the surviving elements of a(k, co -~ 0, B0) (referred to here as 
~,,) are all real for the following reason: Suppose that some of these elements are odd 
in co as co tends to zero. This implies that ~,~ is either zero or infinite. But, by definition, 
6,v cannot be zero, nor can it be infinite, since there is no finite electric field capable 
of inducing infinite current. Hence, each of  the surviving elements must be even in co 
as co tends to zero. This admits that c7,~ = const at co = 0. Moreover, only the real 
part of  a is even. Hence, the surviving elements of a(k, co ---- 0, B0) are r e a l  constants 
(see footnote 10). The same conclusion obviously holds for the external conductivity. 

To deduce the analyticity properties of D-I/co (which is the response function 
of  the electric field for external current), a �9 D -1 (which is the response function of  
the current to an external current), and a, we start by noting, from (15) [or from the 
"plus-ness" of (35)] that a(k, co, B0) and, consequently, both D(k, co, B0 )=  
A(k, co) -- ct(k, co, Bo) and adj D(k, co, Bo) (which is formed from products of elements 
of D) are analytic in the upper half-plane excluding the origin. Then, since D -z = 

1~ The longitudinal components of the Kramers-Kronig formulas (34b,c) are also quoted for metals 
in Ref. 4a, p. 260, Eqs. (62.8, 11). 

822/z/3-4 



426 K.I .  Golden and G. Kalman 

adj D/[ D ], it is clear that the only poles of D-~(k, co, Bo) are those which correspond 
to collective modes ([ D [ = 0), and, for a stable system, such poles must necessarily 
lie in the lower-half co-plane. Therefore, D-z(k, co, Bo), and, consequently, the objects 
D-Z(k, co, B0)/co, a(k, co, Bo) �9 D-l(k, co, B0), and b [see Eq. (19)] are regular and one- 
valued in the upper half-plane. The behavior of these objects at co ----- 0 will be dis- 
cussed as we consider each of them separately. 

The Electric Field-External  Current  Response Function. Starting with 
D-l/o J, we note that, as co tends to zero, the longitudinal component, 

k"  D-l(k, co, Bo) " k/co, 

can diverge as 1/co (see footnote 10) due to the infinite longitudinal electric field 
(piling up of charge) associated with a finite external current density. The singularity 
of this transport coefficient at co = 0 can be eliminated by subtracting off 

The resulting object 

D-l(k, 0, Bo)/W. 

[D- l (k ,  co, Bo) --  D-1(k, 0, Bo)]/co (36) 

is thus analytic in the upper half-plane including the origin. Moreover, as co tends 
to infinity, (36) tends to zero at least as rapidly as 1/co. Clearly, (36) is a plus func- 
tion, and therefore satisfies the Kramers-Kronig relations 

Re D-1(k' co' Bo) --  D-l(k, 0, B0) 
c o  

co ! 
1 ~ f dco' , I m  D-l(k' co' B~ -- D-l(k' 0, Bo) (37a) 

_ c o c o - - C O  CO 

Im D-a(k' co' Bo) -- D-~(k, 0, Bo) 
c o  

co t 
_-- + __1 ~ f dco'__ , Re D-l(k' co, B~ - -  D-l(k' 0, Bo) (37b) 

77" --o~ c o  - -  c o  c o t  

In particular, when there is no external magnetic field acting, Eqs. (37a, b) split into 
separate longitudinal and transverse relations: 

Longi tudinal  

Re --1 1 1 ___ . . . .  1 ~ do)' , Im 1 (38a) 
OJ eLL(k ,  co) ELL(k, O) "77" --oo co - -  co cotELL( k ,  cot) 

Im 1 1 ~  f~ do)' I [  1 1 ] 
coeLL(k, co) = z, _~ co -- co' Re eZL(k, co ' )  eLL(k, 0)  

(38b) 
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T r a n s v e r s e  

R e - -  1 1 ~ f o  dco' 1 (39a) 
c o o ~ ( k ,  co)  - -  . - ~  co _ co-------~ I m  o~'Dr~(k, co') 

1 
Im coDrr(k, co) 

_ _ F l ~ f  ~ dco' 1 
~- _oo co - -  o9 - - - - - - 7  Re co ,DrT(k ,  co,) (39b) 

Should  the p l a sma  be absent ,  then (36) goes over  into the re ta rded  vacuum p r o p a g a t o r  

Z~-l(k,  co) - -  ZX-~(k, 0)  co 
- -  T (40) 

co kSc  2 __ cos 

with its fami l ia r  causal i ty  relat ions.  
No te  that ,  while the t ransverse componen t  o f  the object  A-Z(k, co)/co vanishes 

at  co = 0, the longi tud ina l  componen t ,  - -kk/co,  nevertheless exhibi ts  a divergence 
there due to the infinite e x t e r n a l  charge density associa ted  with a finite external  
cur rent  density. This is wha t  mot iva tes  the fo rma t ion  o f  the object  (40). Moreover ,  
i t  is this infinite external  charge densi ty  which is actual ly  responsible  for  the divergence 
in k �9 D- l (k ,  co, B0) �9 k/co at  co - 0. 

External Conductivity. Concerning the external  conduct ivi ty ,  we recall that  

the surviving elements o f  ~(k, co = 0, B0) are (real) constants ,  le Moreover ,  & exhibits 
the same high-frequency behavior  as a [cf. Eq. (20)], so that ,  as co tends to infinity, 

tends  to  zero at  least  as rap id ly  as 1/co. These, together  with the es tabl ished analyt -  
ici ty o f  8 in the uppe r -ha l f  co-plane, qual ify ~ to be a plus funct ion.  Consequent ly ,  
it  obeys the same K r a m e r s - K r o n i g  re la t ions  (33a, b) as a.  

The  C u r r e n t - E x t e r n a l  C u r r e n t  Response Funct ion.  Turning  next  to the 

object  ct �9 D -1, which connects  the "d r iv ing"  quan t i ty  j to the " r e s p o n d i n g "  quant i ty  j 
(cf. Table  I), ct �9 D -z mus t  tend to a cons tan t  as w tends to zero (see foo tno te  12), 
since a finite j cannot  p roduce  an  infinite j (cf. A p p e n d i x  A). This, and  the fact  tha t  
this object  is analyt ic  in the upper  hal f -plane and  tends to zero as co tends to infini ty 
at  least  as rap id ly  as 1/co z, are sufficient to qual ify ct- D -1 as a plus funct ion.  

12 One can be more precise about the co --~ 0 behavior of ~. From Table I, it can be shown that 

jL(k, co -+ 0) --~ --(i/eoCO) OLL(k, co --~ 0, B0)" jL(k, co --~ 0) 

jr(k, co --* 0) --~ --(i/eoco) CrrL(k, co --* 0, B0)' jr'(k, co -+ 0) 

Since a finite jz cannot induce infinite j, it follows that, at most, 

~Ll:(k, co --* 0, B0) --~ iaeoco, ~rZ(k, co ~ O, Bo) ~ ibEoo~ 

where a and b are real scala" and tensor constants. [Consequently, one can also deduce that, as 

a . D -1 -+ --(i/eoco)(~ rL 4- a LL 1). kk = (b 4- a l ) .  kk] 
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Its Kramers-Kronig relations are obviously 

Re[a(k, co, Bo)" D-l(k, co, Bo)] = -- lrr ~ _f~oo_ CO riCO'____ CO' Im[a(k, CO', B0) �9 D-l(k, CO', Bo)] 

(41a) 

Im[a(k, co, Bo)" O-~(k, to, Bo)] = q- --~rl ~ _.f~_ CO do.,'_ co' Re[a(k, CO', Bo) �9 D-~(k, CO', Bo)] 

(41b) 

These formulas can also be stated for the longitudinal and transverse projection 
separately. Some manipulation yields the longitudinal formulas 

f 1 q- k " D-ZV(k, CO, B0) " k = __i ~ ~ d C O '  7r ~ co _ _  t o ,  k �9 D - l ^ ( k ,  co, Bo) " k 

(42) 
k .  D -x^ (k, co, Bo)" k = / ~ _j.o~ dCO' [1 -}- k .  D-Z~(k, co', Bo)'  k] 

77" --Qo CO - -  COt 

In particular, when there is no external magnetic field, Eqs. (41a,b) split into the 
independent longitudinal and transverse relations: 

Longi tudinal  (va,b) 

aLL(k, CO) 1 ~ f~ dco' aLl(k, co') 
Re eZL(k, w) -- r -~o co -- to---'----7 Im eLL(k, 03') (43a) 

aLL(k, tO) 1 ~ f~  dco' aLL(k, CO') 
I m  ELL(k, (.O) ~ "~- -~-  --Qo co - -  co - - - - - - ~  R e  ELL(k, (..0r (43b) 

Transverse  

o~TT(k, to) __ 1 ~ f~o dco' Im c~rr(k' to) 
Re DTT(k, to) 7r -oo co ~-co '  DTT(k, CO') (44a) 

arT(k, to) 1 p f ~  d t o '  a T T ( k ,  CO') 
Im DTT(k, to) = @ --~ --oo CO - -  CO~ Re DTT(k, to,) (44b) 

Magnet ic  Polar izabi l i ty .  A response function not related to the reaction 
of  the system to an external field, and therefore not represented in our Table I or 
Fig. 1, is the magnetic polarizability tensor {fT. From (10), we see that ~zr is analytic 
in the upper-half CO-plane and vanishes at to ----- 0 [cf. Eq. (29) and our discussion below 
,(35) in connection the behavior of a r r  as CO --~ 0]. However, as co tends to infinity, 

0)02 {k X ~TT k}l~ 0 as 1/co {k X ~rr X k}n .~ -+  k2c2 , X --~ 

so that the diagonal element of {rr(k, co, B0) alone cannot be plus functions. On the 
other hand, all elements of the modified magnetic polarizability tensor 

~TT(k, CO, Bo) -- ~TT(k, ~ ,  Bo) (45) 

do tend to zero as to tends to infinity. Clearly, the object (45) is a plus function, and 
:therefore satisfies a set of Kramers-Kronig relations. 
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2.3. Sum Rules 

The sum rules which we now derive give definite values to integrals of frequency- 
weighted dissipative parts of the transport tensors. For the most part, these rules are 
the same for classical and quantum plasmas, and they are formulated quite indepen- 
dently of the particle interactions. In this section, we shall discuss sum rules for a, ty, ~, 
1/E LL, and ~rr /Drr ;  some of these are of general knowledge, while others are more 
or less straightforward generalizations and extensions of the known cases. This study 
will be carried out starting from the Kramers-Kronig relations formulated in the 
preceding section. Such an approach exploits the fact that, at high frequencies, the 
electrons behave like a collection of noninteracting particles. In a nonrelafivistic 

t ! plasma, this implies that, ~3 for co --~ ~ ,  a is diagonal and a~ ~ ~2 ~ a38 ~ --coo~/co2, 

o r  

- - - % % 2  ( 4 6 )  0"11 ~-~ O'22 ~-" (Y33 ~ '  / c o  

where coo --- (noe2/mEo) ~/~ is the plasma frequency and no the equilibrium number 
density. 

In a nonabsorbing medium, the dielectric tensor is Hermitian, so that its sym- 
metric components e(,~) must be real. Then, clearly, the presence of any dissipation 
is reflected by an imaginary contribution to each such component. On the other hand, 
the antisymmetric elements E[,,] are pure imaginary in a nonabsorbing medium, so 
that, for these latter elements, it is now the real part which reflects dissipation. Without 
loss of generality, we choose either the B0-system [k=k~,  0, k,), B 0 = (0, 0, Bo)] 
or the k-system [k = (0, 0, k), B 0 = (B0~, 0, Bo~)] for the relative orientations of the 
external field and wave vector. Equation (176) in Section 3 then shows that Ez3 and 
~az are symmetric, while the remaining off-diagonal components are antisymmetric. 

C o n d u c t i v i t y  S u m  R u l e s .  Consider first the elements I 1, 22, 33, 13, and 31 of the 
polarizability tensor. In the high-frequency limit (co --~ co), a denominator expansion 
of the Kramers-Kronig relations (34b) leads to 

a~,v)(k, co -+ ~ ,  Bo) 

2 dco' co%(",~)(k, co', B0) 2 dco' ,3 ,, ~- , - -  - -  - -  co ~ ( .~ ) tK,  c o ,  B o )  . . . .  ( 4 7 )  
77092 0 3TCO4 0 

[Ref. 4a, p. 261, Eq. (62.14); Ref. 7a, p. 136, Eq. (3.40)] ~. From the reality of 

a~ See, for example, Ref. 4a, p. 251; Ref. 3, p. 104, Eq. (98); Ref. 9, p. 145; Ref. 23, p. 58. 
1~ There are definite restrictions on the validity of  the denominator  expansion leading to Eq. (47), 

and these restrictions strongly depend on the particular plasma model  chosen. To see this, suppose 
that, as co tends to infinity, ~ )  -~ A/50 ~ where A is some constant  and s can take on integral 
values f rom one on up (for example, in the constant-collision-frequency model  o f  a cold plasma, aS) 
s = 1). We can then write 

50-,~ co --  co" C~c"~(c~ ) ~  2 lira 50~eo o 5~ - -  c~ f oo d50" I 
- -  " -  " 50"<'  ( ~ o ' ) ,  

oJ 
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a(r, t, Bo) and its invariance under  spatial inversion, z~ c% must  be an even function 
o f  co. Thus, ~[~(k, co --> 0% B0) can be, at most, of  order  1/o~ ~ of  smallness, whence, 

Since 

E '2n+l " " + doYo~ a ( . ~ ) ( o ~ ) + A ~  - - -  
e~=s 0 to  ( ~  - -  c ~  s 1 7 6  

f ~ do~" 1 lira S ( ~ )  
2A lim ~ o~ ~ ~ ~'~ ~o "~ ~ ~o.o~ co ~'+~ 

where S<.~) is a constant,  it follows that  this last term might be comparable  with or larger than the  
terms in the second summat ion extending f rom s to infinity. More  precisely, the integrals in the  

. y ~ s - - 1 .  
first summat ion  ( . = o )  are bounded,  whereas those in the second diverge in such a way that 

2 lim ~ 1 d~'  o~'2"+1c~.~)(oJ ") ~ lim co ~+~ 
n ~ s  

where R(u.) is a constant.  Then the expansion can be writ ten as 

t l ,  
O)~eo O9-~ oo 

where I~2;) = 2 f~ d~" co "2''~ d'(u~)(o/). For  example, in the case of  the constant-collision-frequency 
model,  where s = 1, we have 

f ~  I(~ lira ~ do~'__ ~i, l(oy ) ~ --s U R(.~) + Stay) 
09-->cc oe CO -- r t..O3 

which implies that, for c~v)(~o -+ oo) --+ 1/~o 3, one cannot  go beyond the first term on the r.h.s. 
o f  (47) in formulating the sum rules. 

Turning next to the antisymmetric elements of  a (~{u~](~o --* ~ )  --+ 1/o:  (~+a), s >7 1), it can be 
similarly shown that  

lira ~ - - -  c~;..](co') ~ lira + 
t~O->Oo r -- ca)" taJ-~vc 

~0 

whereZf~ = 2 L do; :"%:o~'). Then, for the particular caseof theconstant-collision-freqnency 
model  (s = 1), we have 

ir(O) (1) 

lim ) + 

which implies that, for the formulat ion of  the relevant sum rules, one cannot  go beyond the third 
term on the r ight-hand side of  (50). 

In  a collisionless model  (cf. Ref. 21) the dissipative part  of  a vanishes exponentially following 
the high-velocity behavior  of  the distribution function, and therefore the high-frequency expansion 
is no t  restricted in any way. Higher-order  approximations,  however, being tan tamount  to the 
inclusion of  collisions, have not  been worked out in all detail, and are expected to lead to essentially 
the same high-frequency behavior (32~ as the naive constant-collision-frequency model.  

z5 For  equilibrium systems, there is no  relative drift velocity among the plasma particles. 
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comparison of coefficients of 1/oJ 2 and of 1/co 4 between (46) and (47) leads to 

f "  do,' o,'c/'.~)(k, co', Bo) = {7r0902 ~.~ (48) 
0 

From (15) and (48), one readily obtain the "conductivity" sum rule [see, e.g.. Ref. 7b. 
p. 209, Zq. (4.25)] 

f~  ~rwo e0~.~ (49) &o' cr(.~)(k,' co', Bo) = t 2 
0 

Turning next to the remaining off-diagonal elements/zv -- 12. 21, 23, 32, the high- 
frequency denominator expansion of the Kramers-Kronig relation (1.34) yields 
(see footnote 14) 

f a['~](k, co -+ 0% B0) = (1/c0w) c~[.~](k, co = 0, B0) + (2/~-o,) do,' af.~](k, co', Bo) 
0 

F 4- (2/7ro, 3) do,' co'2e~[.~1tK," ~'- co', B0) + ..- (50) 
0 

From the reality condition and invariance under spatial inversion, the component 
a[".~l is an odd function of the frequency, and therefore can be, at most, of order l/o, a 
of  smallness. Hence, from (50) one can deduce the sum rule 

f "  do,' ~f..~(k, o,', B0) =- - ( ~ / 2 . o )  ,~t.~Ox, o, = o, Bo) 
0 

or, in terms of the conductivity, 

(51) 

S ao,' {~%0,, o,', B0)/,o'} = �89 ,o = 0, Bo) 
0 

(52) 

Equation (52) can also be obtained by setting co = 0 in the Kramers-Kronig relation 
(33a). 

Further results can be obtained only by examining the high-frequency behavior 
u 

of e%~ 1 . To do this, one consider the collection of noninteracting motionless particles 
to be governed by the equation of motion 

(o,8.~, - -  io,,e.~SIo~)j~, = i%o,o~E. (for co ~ oo), (53) 

where o,c = f e fBo/rn is the cyclotron frequency, e,~ is a component of the unit 
permutation pseudotensor, and t~ 0 is the unit vector in the direction of B 0 . Equations 
(12)  and (53) then give 

~(..j(k, co --+ 0% Bo) = (o,oeo,c/o, z) ~.~/)o~ (54) 

which, in virture of (50), yields the higher-order sum rules 

( "  do '  ,2 ,  ,,. , Bo) �89 , . ,~o~ (55) cO o~[udkt % r , 
, I  o 
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with the corresponding conductivity rule 

J dw' oJ'~t",,](k, w', Bo) = -- ~rco o ~  ~w~ %~,~/~0~ (56) 
0 

Compressibi l i ty  Sum Rules. Upon setting co : 0 in the Kramers-Kronig 
relation (34), one obtains 

f~  do)' c~(",v)(k, co', Bo) 
~-g 

/ 
o co' 7 ~(,,)(k, co 0, Bo) (57) 

for the symmetric elements of the polarizability. Since all the surviving elements of  
o(k, co = 0, B0) are real, then, as co tends to zero, the corresponding c~,(k, co : 0, Bo) 
tend to zero at least as rapidly as oJ (because of the odd parity in co). This implies that 
the corresponding c/,,(k, % B0) can, at most, tend to constant values as co---> 0, 
consistent with the even parity of ~',(co). In particular, for the case of a warm, 
collisionless plasma [see Appendices A and B--Eq. (B9)], 

S Im o~LL(k, CO', B0) = dco' 77" K 2 

o - J  2 k ~ (58) 

in the k-system. Equation (58) is akin to the so-called "compressibility sum rule" 
discussed by Pines and Nozibres for an electron liquid [Ref. 7b, p. 210, Eq. (4.29)]. 

Table II summarizes our sum-rule findings for the polarizability tensor. No sum 
rules exist for n ~> 3 due to the appearance of terms of the type Ooo~k2v2/oj 4 in the 
expansion similar to (47). It is interesting to note that, for a warm, collisionless plasma 
in a constant external magnetic field, the Vlasov expression for a (~9,2x) completely 
exhausts the sum rules in Table II (see Appendix B). 

Concerning the external conductivity, we observe that 6 and a both satisfy the 
same Kramers-Kronig relations and have the same asymptotic behavior at high 
[frequencies [cf. Eq. (1.20)]. Therefore, 6 and cr obey the same sum rules, and, in 
order to obtain rules for b, one need merely replace cr everywhere in (49), (52), and 
(56) by 6. Table III is presented as a summary for ~r. The rule corresponding to n = --2 
was obtained by setting co = 0 in the Kramers-Kronig relation 

f a"(k, ~,, Bo) = ! ~ ao~' ^ ,  

w ~r _ ~  co 2 - -  co '2 ~ ( k ,  co ' ,  B o )  

Table I I .  Polarizability Sum Rules 

n (21~) fo  d~,' <o'"~<".~ )(,,,') (21,.) J'o do,' <o'.~<r..](<o' ') 

- -1  ~'(u~)(k, co : 0, Bo) 

0 - -  --%l~r[~v](k , ~o = 0, Bo) 

2 - -  COo 2 aJo~[~v]~B0~ 



The Electrodynamics and Statistical Mechanics of Linear Plasma Response Functions 

Table I I I .  External Conductivity Sum Rules 

n (21~-) f~o d o '  '~" . . . . . . . .  o, .(.~)(~, ) (2/,,) ,1o doi ,,, . ~ ( . ,  ) 

--2 --limbos0 [a~,~)(k, co, B0/o~] 
- - 1  - -  a ~ . ~ ] ( k ,  ~o = O,  B0) 
0 ~o2eoS(~v) - -  

1 - -  --  COo ~ o~o~[u~]~/~o~ 
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The boundedness of the dc ~, together with the odd frequency parity of its imaginary 
part, ensure that lim~o ~l"u,)(o~)/w is constant. 

f-Sum Rules. Another family of sum rules (the so-called f-sum rules 1~ are 
obtained by considering the quantities 

~LL 1 c~ T~ n 2 -  ] 
A ' D  - I " A ,  ~L~---- 1 ~LL, Dr r ~ D~ ~ 1 

First, from (15) and (19), 

~(k, o~, Bo) = --i~o.oA(k, ,o)- D-l(k, o~, Bo)" A(k, ~) + io~.oA(k, ~) (59) 

so that the sum rules for A �9 D -1 �9 A are easily obtained from the sum rules for b. 
Upon exploiting the symmetry relations in Section 3 [cf. Eq. (176)], one finds, from 
(59), that 

o(.v)(k,~' ~o, Bo) -- ,O~o~(k, oD Im D(~)(k,-1 ~, B0) ~ ( k ,  oD (60) 

~t'~vl(k, 04 Bo) = --~o%/L~(k, co) Re D~-~a(k, ~, Bo) A~(k, co) (61) 

Direct insertion of (60) and (61) back into the ~r rules immediately leads to 

fo~ do /~ 'A~(k ,  co') Im D(~,~)(k,-Z ~,,  Bo) A~(k, o/) = ~Tr~ 2 ~.~ (62) 
o 

f| do/A.~(k, o/) Re Dt=~j(k,-1 co', Bo)/l~v(k, co') = --(~/2Eo) et.~l(k, co = 0, Bo) 
o (63) 

f ~  do/~o'~A.~,(k, co') Re D~-~](k, w', Bo) AB/k,  co') = ~Tr~ ~oJ~ %~a~o~ (64) 

In particular, premultiplication and postmultiplication of (62) by k yields 

f*  &o' o / k .  [Im D-l(k, co', Bo)]" k = ~-~r~oo ~ (65) 
o 

x0 See Ref. 4a, p. 347, Eq. (84.10); Ref. 7a, p. 136, Eq. (3.138); Ref. 7b, p. 205, Eq. (4.11); Ref. 23, 
pp. 39, 61, 242; Ref. 24. 
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When there is no external magnetic field acting (13o = 0), Eq. (65) becomes the well- 
known longitudinal f-sum rule (see footnote 16): 

aco 

j do)' co' Im[1/d:~:(k, co')] = -- �89 (66) 
o 

while (62) splits, giving (66) and the transverse rule 

foo do)' aTT(k, co') wcoo 2 
o ~ (k2ce - -  co,s) Im D r y ( k  ' co,) : 2 (67) 

Equation (66) can also be formulated directly from the Kramers-Kronig relation (43a) 
using the high-frequency (w -+ ~ )  denominator expansion technique described earlier 
for a. Or, if one starts from the Kramers-Kronig relation (38a), the denominator 
expansion method yields both (66) and 

f  ,lm 1 1 ] (68) 
o ELL(k, co') 2 ~LL(k, O) 

[see Ref. 7b, p. 210, Eq. (4.30)]. In particular, when k tends to zero, use of the 
Vlasov expression eLL(k, 0) = 1 -b (K2/k ~) in (67) leads to the long-wavelength 
"perfect-screening" sum rule 

( ~ dco' 1 Ir 
lim -~7 Im -- (69) 
k - ~ O .  0 ~LL(k, COt) 2 

[see Ref. 7b, p. 210, Eq. (4.31)]. This derivation suggests that (69) is valid only for 
warm, collisionless plasmas, although its domain of validity might be more extended. 
It is interesting to observe that (68) can be alternatively derived from (43a) by setting 
co = 0 therein. 

Turning next to the corresponding transverse rules, if one sets co = 0 in (44a), 
there results 

f~  = 0 (70) 
rico' o~TT(k, O31 ) 

0 co' Im DTT(k, co,) 

Hence, (67) simplifies to 

co') 
o do)' co' Im DTT(k, co') 

"/TO3 0 2 
(71) 

It is not surprising to see that this last result can also be derived from (44a) by the 
high-frequency denominator-expansion technique. To summarize, we present the 
longitudinal and transverse ]=sum rules in Table IV. 

It is now clear that one can extract a great deal from Maxwell's equations and 
the linear causal constitutive relations with minimal recourse to particle dynamics. 
However, any extensions of the theory of electrodynamic transport coefficients pre- 
sented thus far must necessarily involve some suitable description of the particle 
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Table IV. f-Sum Rules 
, i i 

n (2/~) f~ dco o,,, Im[1/~LL(~, k)] (2/,7) fo d~o co ~ Im[arr(k, r o~)1 
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--1 --Re{1 --  [I/eZL(k, 0)]} 0 

+ 1 _ r _ COo 2 

dynamics. In Section 3, we present such a description starting f rom the statistical- 
mechanical Liouville equation. 

Rela t iv is t ic  S u m  Rules.  Particle dynamics enter the sum-rule derivations 
only through the simple cold-plasma relatives, determining the coefficients in the 
asymptotic expansion. Hence, relativistic effects appear as modifications of  these 
coefficients. So far as the diagonal sum rules are concerned, merely the plasma 
frequency is of  interest. Simple manipulation with the relativistic equation of motion 
reveals that the appropriate expression for the plasma frequency becomes a7 

s  2 plasma ~___ r _ _  U S  
~--1 : (1 - -  v~ ]1/2 

c--T] (72) 

For  the off-diagonal elements, relativistic equivalents of  combinations involving 
the plasma frequency and the cyclotron frequency are needed. One can derive these 
either by a high-frequency expansion of the appropriate relativistic expression f o r  

the polarizability in the Vlasov approximation (which is exact in the co --~ ~ limit) 
given by Trubnikov, (2~) or through the equation of  motion, which becomes, however, 
somewhat unwidely. The appropriate  replacement turns out to be 

3e ~ l /  
(73) 

17 Our simple equation-of-motion result is corroborated by considering the co--+ ~ limit of the 
relativistic Vlasov polarizability ~31) 

f �9 ~F/~p a(k, co) -- -- co~ k 
--  - ~ - m  ~ o + k . v  d~p 

for the magnetic field-free (B0 = 0) electron plasma, where p is the momentum and F is the re- 
lativistic Maxwellian distribution function normalized so that f dSp F = l. Passing to this limit, 
we then have 

~o02m ( ~F oJ0-~m 
c~(k, ~o---* oo)-*--7~Tk2 k~,kt~ j d"p v~ -- k~k~ f dap F ~ 

-- co t ke, k~ c ~ ] 

co2 3c 2 ] /  
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3. S T A T I S T I C A L  M E C H A N I C S  O F  R E S P O N S E  F U N C T I O N S  

Section 3 is divided into five subsections. In the first three, we present several 
principal formulations of the equilibrium fluctuation-dissipation theorem for non 
relativistic classical plasmas with and without constant external magnetic fields. The 
equilibrium state of the stationary and homogenous system of plasma particles and 
electromagnetic field will be suitably represented by a macrocanonical distribution 
[cf. Eq. (76) below]. Our treatment follows the statistical-mechanical method of 
Kubo (~c,1~-15) in establishing the relationship between the external conductivity 
and the current-density fluctuation spectrum. We shall see that, while the Newtonian 
microscopic equations of motion for the relativistic and nonrelativistic cases differ, 
the fluctuation-dissipation theorems for these cases are nevertheless the same. In 
Sections 3.4 and 3.5, certain symmetry relations and higher-order sum rules for the 
transport coefficients are developed from the FDT. 

The essence of the statistical-mechanical method of Kubo is this: Starting from 
the formal solution of the Liouville equation perturbed from the initial state of 
equilibrium, one calculates the response of the system to a small external perturbing 
agency, specified here to be the vector potential (see footnote 3) 

A(r, t) --= (1/La)•k(t) exp(ik �9 r) (74) 

Since this response is, in turn, connected to &~/~t by the external conductivity [see 
Eq. (14)], one is led to a relationship between the zero-order current correlation and 
first-order conductivity tensors (with respect to the perturbation). 

The Liouville distribution function f2 is normalized to unity, so that the ensemble- 
averaged current density is given by 

(i) = f dr~ oj (75) 

where d r  • is an element of hypervolume in the _P-phase space spanned by the coor- 
dinates and momenta of the particles and field (~6) (the precise significanoe of the 
superscript R will be discussed below). 

3.1. The Nonrelat ivist ic FDT  for Electron Plasmas 

Description of the Unper turbed System. Let us first consider a plasma 
model in which only the N electrons (each carrying charge e = --I e I) confined in a 
large spatial volume L 8 play the dynamical role; the positive ions serve to provide a 
uniformly smeared out background. Such a model is hereafter referred to as an 
electron plasma. 

We take f2 ~ to represent the macrocanonical distribution 

D ~ ----- Z -1 exp(--/3H~ Z ----- f d r  R exp(--/3H ~ (76) 

at temperature/3 -1 (in energy units) characterizing the stationary and homogeneous 
state of the system in the infinite past. Adopting the gauge where the scalar potential 4' 



The Electrodynamics and Statistical Mechanics of  Linear Plasma Response Functions 437 

is set equal to zero, the nonrelativistic equilibrium Hamiltonian H ~ which includes 
interaction is is 

37 

H ~  E 1 2 ~ (77) ~mv~ -- ~ (eo/2L~)(E,.E_I. -k &lZT.~AI.A-I.) + (Bo2/2/Zo) L ~, 
4=1 1 

where 

vi(xi, p i ,  {Aq}) : (1/m)[pi -- (elL ~) ~ A_q(exp --iq" xi) -- eAo(xi)] (78) 
q 

is the velocity of  the ith particle, Ao is the vector potential corresponding to the 
constant external magnetic field Bo, and the xr p~, Aq, and E~ are the particle and 
field coordinates and momenta. Having set r = 0, we observe that the entire longi- 
tudinal responsibility is shifted to the vectol potential, i.e., 

Ek(t) = - A d t )  (79) 

This has important consequences, for, on the one hand, the A~,  like the Ak T, are 
regarded as being independent field coordinates, while, on the other hand, the longi- 
tudinal components of the E k are not independent field momenta. More precisely, the 
Ek z are necessarily constrained to obey the subsidiary conditions: 

k '  Ek(t) = --(ie/%) ~, exp[--ik �9 xi(t)] (80) 
i 

:showing that each Ek z depends on all the particle coordinates. There is no such 
subsidiary condition for the A~.  Thus, regarding the / ' - space  as being spanned by 
the x~, p~, A k , and E k , the infinitesimal element of reduced phase volume is given 
by 

dr R : d{x~} d{p,} d{Ak} d{Ek} I-I 8[q" E, + (ie/eo) ~ exp(--iq �9 x~)] 
q i 

d r  1-I 8[q. E~ + (ie/~o) ~ exp(--iq �9 x,)] (81) 
r i 

The microscopic charge and current densities of the unperturbed system are given 
by 

p~ t) = e ~ ~(r --  xi(t)) (82) 
i 

j~ t) = e ~ vi~(r -- xi(t)) (83) 
i 

with spatial Fourier transforms 

pkO(t) = e ~ exp[-- ik �9 xi(t)] 
i 

jk~ = e ~ vi exp[--ik - xi(t)] 
i 

(84) 

(85) 

58 It should be clear that the longitudinal interaction in the r = 0 gauge is portrayed by the terms 

e , ~o E L  

z q q 
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In the sequel, we focus our  at tention on the charge and current correlations, 
taken at two different space-time points,  and averaged over the equilibrium ensemble. 
Letting 

<...>o = f d r  R .Q0(...) 

denote the expectat ion value of  any quanti ty over the equilibrium ensemble, these 
correlations are 

e (g ,  7, Bo) = (pO(r, t)p~ -}- ~, t + ~.)>o = <po(O ' 0)pO(g, r)>o (86) 

Q.v(g, % Bo) = ( j .~  t ) j f l ( r  -}- g, t + "r)> ~ = (j .~ 0)j~~ "r)) ~ (87) 

and, for  the stat ionary and homogeneous  system, the corresponding Fourier  t ransforms 
become 

e (k ,  ~-, Bo) : (1/L3)(pk~ pOk(0)>~ (88) 

Q.v(k, ~', Bo)  3 .o .o o = (1/L)(Jk~('r) J_~,.(O)> (89) 

P(k,  to, Bo) a(to - -  co') = (1/2~rL3)(pk~ p0_k(--to')>0 (90) 

Q..(k,  co, Bo) 8(w --  co') = (1 /2~.La)( jo(w)  j_k.t__~o.0 ~ ,.\0)/ (91) 

Making  use o f  the continuity equat ion 

topk~ = k �9 ik~ (92) 

one then obtains the following relat ionship between the charge and current  density 
fluctuation spectra: 

co~"P(k, co, Bo) = k .  Q(k, co, B0)" k (93) 

Fur ther  on, we shall encounter  the equal-t ime current  and charge density correlation 
functions Q(k, -r = 0, Bo) and P(k,  ~- = 0, Bo), so that  it is useful to present  their 
calculations at  this time. F rom (89) and (88), one readily obtains 

Q.~(k, ~" = 0, Bo) = (1/L 8) ~ e2(v~,,vj.> ~ <exp[- - ik  . (xi - -  xj)]> ~ 
i , j  

= noe28.~�89 ~ ~ (%~o'~//3)3.~ (94) 

where n o and  too are the equil ibrium values of  the number  density and p lasma fre- 
quency?  9 Equat ion  (94) reflects the fact  that  velocities are uncorrelated in the equi- 

19 We note that Eq. (94) can be alternatively derived via the formal steps: 

~ E e~ <v;.~(0)vj(0) exp --ik �9 [xi(0) -- xj(0)]> ~ 

= L~ v,. [exp --ik" (x, -- x,)] ~ ?  
z,J 
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l ibr ium ensemble. Fo r  the calculation of  the equal-t ime density correlat ion function, 
it is necessary to introduce the one- and two-particle equil ibrium distribution functions, 
F(x,  p) and 

G(x l ,  P l ,  x~, P2) 

: G(12) = N ( N  --  1) f d3xa -.. d3xN d3p3 -.. d3pN ' ' '  d3A~ "" d~E~ --- f2 ~ (95) 

and  the pa i r  correlat ion function g,(26~ defined by the equat ion 

G(12) = F(1)F(2)[1 § g(] x~ - -  xz [)] (96) 

where/7(1)  and F(2) are normalized so that  fF ( i )d3p i  = no. Then, evaluating the 
electronic charge density correlat ion P ,  first, one finds that  

e 2 
P,(k,  ~" = O, Bo) = ~-g ~. ( exp{- - ik  �9 [xi(O ) - -  xj(O)]}> 0 

e 2 
= L- ~ N ( N -  1)<exp{--ik �9 [xz(O) - -  x,,(O)]}> ~ § e2no 

= eA f f f f  daxld3x2d3p~d3p2{exp[--ik. (X 1 - -  X2)]} ( ~ ( 1 2 ) " @  e2no 
L a . 

e2no 2 l ' f  
- 3 3  d %  d x {exp[- k �9 ( x i  - -  x )J}I1 + g(I - -  I)l + e 'o 

= e~no[1 + nog(k)] q- e~no2L33k,o (97) 

Since the uni form static ion background  contributes the compensat ing  te rm 
--e2noZL3$k,O, it follows that  

P(k,  ~" : 0, B0) = e2n0[1 + hog(k)] (98) 

for  the electron plasma.  

Linear Response Theory. We now turn to analyze the effect o f  and response 
to a small per turbat ion which removes the system f rom equilibrium. 

e 2 r 
- 3-" ( drR vj. - -  {~o e x p  - - i k  - ( x i  - -  x j ) ~  

ilL8 i,j J 'P~ 

e 2 e ~" ~vj~ _ --~ Y ( drR no ~vi~ = ~ f drR S?O[exp --ik" (x~--xj)] OPiv flL ~==jJ 'Op~, 

- -  n~ ~'~176 ~.~v 

[cf. Eq. (78)1. 
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The introduction of the small external agency A into the system produces the 
perturbation expansions 

where 

H = H ~ - / H '  (99) 

52 = 520 + .('2' (100) 

j(r, t) • j~ t) + j'(r, t) (101) 

H'  = --(1/L 3) Ak.(t)j~ (t) 

is the Hamiltonian for the interaction between the system and .&, and 

]'(r, t) = --(e2/m) ~ A ( x i ,  t) 8(r - -  xi(t)) 
i 

(lO2) 

(103) 

where 

(105) 

ultimately leads to the solution 

5 2 o d  o T)[exp(--h-~c:~ - ~ j _ k . ( t )  (106) 

The microscopic current density depends on time implicitly through the particle 
momenta and the particle and field coordinates. Then, clearly, the dynamical variable 
j~ ) = j~ ), t) satisfies the Heisenberg euqation 

d o  o d o  - ~ j - k . ( t  - -  ~') -~ [exp(--h-ZP )] ~/ j_k.( t)  (107) 

where it is understood that (t - -  z) refers to time displacement determined by the 
dynamics  of the unperturbed system. Putting (107) back into (106), one finally obtains 

sQ ' ( r , t ) - -  fi52o ~ d o " fo  dr  ~k . ( t  --  r) ~ j - k . ( t  - -  ~') (108) L * 

(104) e52(r, O/at = - i 2 : ( r ) 5 2  

is the small change in the microscopic current density due to the presence of /1. 
Then, upon noting that g2'(r, t = -- ~ )  = 0 (the perturbation is turned on adiabatic- 
ally), the subsequent perturbation of the Liouville equation 
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Now we calculate the expectation value of the current in the perturbed ensemble 
which, in the Schrgdinger picture, is 

(j} -- f d r  R j(r) .O(r, t) 

= f dr"  j(r) X2o + f dr~ j(r) ~9'(r, t) 

= <j>o + <j>, = <j,}o + (joy (109) 

since (j0}o = 0 and (j '} '  is of second order of smallness. First, we calculate (jo},. 
From (108) and (i09), 

�9 0 \ t  (.lk~(t)/ = f d rR j~ f2'(r, t) 

p f; = L~ & Ak , ( t  - -  ~) f d r  R 12~176 ~ j " - k , ( t  - -  T) 

d r  - , )  d _  .o .o 
- -  La o dT ~Jk~(t)J-k~(t - -  r ) )~  

= - /3  f f  dr A . ( t  - ~) o dr Q.~(k, % Bo) 

f 
op 

----/3 dr ~k.(t -- r) Q.~(k, r, Bo) +/3Ak.(t) Q.~(k, ~" = 0, Bo) (I 10) 
0 

Here, we have exploited the fact that the stationary system is invariant with respect 
to a temporal translation by (r --  t). Next from (74), (103), and (109), 

(j,~(/)}., o = f drR j~(r)  .(2 ~ - -  m L  3e2 Ak~(t) ~. f d r  ~ f2 ~ exp[ixt- (k -- 1)] 

e 2 

--  m L  a ~ ( t )  8k,1E f d ra  o~  = --%coo2A~(t) 8k, 
T 

so that 

( j~ . ( t ) )  ~ = -- eocoo~k.(t) (111) 

Then, combining (109)-(111) and taking account of (94), one obtains 

<jkv)(O = / 3  dr ~k.(t --  .) Q.~(k, r, S0) (112) 
0 

In contrast to the transport coefficients, Q,~(k, % S0) does not obey any causality 
requirement. Since taking the positive time projection in the ~--domain is tantamount 
to a plus projection in the co-domain [cf. Eq. (30)], we have 

F (jk.(co)} = fi~k.(co) dco' 8+(co - -  co') Q.v(k, co', Bo) (113) 
--co 

82~[z/3-5 
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F l u c t u a t i o n - D i s s i p a t i o n  Theorems. Equation (113) and Ohm's law 

can then be contracted into the first and most concise statement of the FDT ~~ 

f a~,(k, co, B0) = fl do2' a+(co -- to') Q~(k, co', Bo) (114) 

A second, physically more illuminating form can be derived by focusing our attention 
on the dissipative part of Or. First,observe from (91) and the reality condition that Q 
is a Hermitian object--namely, 

Q(k, co, Bo) = Q*(k, co, 13o) (115) 

Hence, 

a* Bo) fi ~~ rico' a_(,,, - co') * " Bo) 
I 'D 

~(k ,  co, = Q~(k,  co, 

f = fl rico' ~3(r -- co') Q.v(k, co', Bo) (116) 
- - c o  

Then, upon combining (I14) and (116), one obtains the second form 

a~'(k, co, Bo) = ~/3Q~.(k, co, Bo) (117) 

Equation (117), in turn, permits us to eliminate the inconvenient 6 and to formulate 
the FDT in terms of D -1^. Starting from (59), we have 

•*(k, co, B0) ---- io2.0A(k, co)- D-l*(k, co, 13o)- A(k, co) -- ico.oA(k, co) (118) 

Addition of (59) and (118) then ~ves 

a"(k, co, B0) = --ico~0A(k, co)- D-1A(k, co, 13o)- A(k, co) (119) 

which, together with (117) yields the third statement of the FDT: 

_ 1  ^ = A~,(k, co) (120) D,v (k, co, Bo) (ifl/2CO~o) d~-~(k, co) Q~B(k, co, B0) -~ 

Now, the behavior of Q depends on the behavior of correlations in the system. 
A knowledge of Q necessarily involves a knowledge of two-time correlation functions, 
which would, in principle, have to be determined from some type of kinetic equation. 
Therefore, it seems to be easier to express Q in terms of D, and, hence, one salient 
advantage of (120). The longitudinal form of (120) is 

k .  D-~^(k, co, B0)" k ----- (ifioJ/2Eo k~) P(k, w, B0) (121) 

[see Ref. 19, p. 117, Eq. (14.23)]. It  is interesting to remark briefly on the third state- 
ment of the FDT when there is no external magnetic field acting (B o ---- 0). In this case, 

2o See, for example, Ref. 2c, p. 580, Eq. (5.11) with h = 0, or Ref. 13a, p. 148, Eq. (2.54) with h = 0; 
Ref. 13b, p. 282, Eq. (11.42). 
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Eq.  (120) spl i t s  i n to  the  i n d e p e n d e n t  l o n g i t u d i n a l  (LL)  {s) ~1 a n d  t r ansve r se  (T-F) 
r e l a t ions  22 

1 c~rZ(k, co) tic~ e ( k ,  co) (122) 
- -  I m  eLL(k, w) - -  I m  eLL(k, co) - -  2%k "~ 

~ r r (k ,  co) flco Q r r ( k ,  co) (123) 
I m  DTT(k, co) 2e 0 k~c ~ - -  ~ 

The  f o u r t h  f o r m  o f  the  F D T  re la tes  the  p a i r  c o r r e l a t i o n  func t ion  g(r) ,  which  is 
the  p r i m a r y  ob jec t  in  e q u i l i b r i u m  s t a t i s t i c a l -mechan ica l  ca l cu la t ions ,  to  the  s ta t ic  
va lue  o f  the l o n g i t u d i n a l  d ie lec t r ic  func t ion .  F r o m  (121) a n d  the K r a m e r s - K r o n i g  
f o r m u l a  (42), 

oo t 

P(k ,  "r : 0, Bo) = ~ P (k ,  co', Bo) 
- - o o  

__ --&o k2 /~  &o' O-l^(k ,  co , Bo) k 
rrfl _+ co ---7- k " ' " 

- -  %k~ [1 ~-' k .  D- l*(k ,  co = 0, B0)" k]  (124) 

whence ,  e l i m i n a t i o n  o f  P be tween  (124) and  (98) y ie lds  

11 "~ I g(k )  = n--o ! no te  "~ [1 + k" D-aV(k, co -= 0, B0) .  k] - -  1 (125) 

I t  can  eas i ly  be shown  tha t  

1 
k �9 D-iV(k, co = 0, Bo) �9 k = - -  R e  

~LL(k, 09 = O, B0) 

and  (125) then  reads  

1 ~ "~ [1 eLL(k, to = 0, B0) ] - -  1I g (k)  = n-'o i ~  R e  - -  1 (126) 

,~z A nonequilibrium generalization of the longitudinal FDT [see Ref. 5, p. 89, Eq. (28) and Ref. 3] 
which, however, is more restricted in that its validity is confined to the lowest order in the coupling 
parameter e -~ is rendered via the idea of uncorrelated "dressed" electron density 

2~e ~ p(k - v~ -- co). 
P k ( m )  - -  ~LL(k, m) . 

Inserting this into our relation (90) and integrating over the arbitrary one-particle distribution 
function F(v), one finds that 

2~n~ f P(k, co) -- [ "LL( k, co) [3 dav if(v) t3(m -- k �9 v) 

For  a Maxwellian distribution, this becomes identical with our Eq. (122) in view of the Vlasov 
relation connecting ~" with the distribution function: c('(k, co) = (Trmflo~o~/k2)(~o/k) F(o~/k), with 
F( ,4k)  = (m~/2~) 1/3 exp ( - ~m o=-'/2k~). 

~ See Ref. 19, p. 114, Eq. (14.13) for the transverse and longitudinal FDT. 
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O n e  o r  b o t h  o f  the r e l a t i ons  (124) a n d  (126) have been  repor ted  earl ier  by  Akhieze r  
e t  al ,  2~ K a l m a n ,  ~'4 I c h i ma ru ,  2~ a n d  Eng le r t  a n d  Brout ,  2~ I n  par t icu la r ,  the first g roup  
o f  au tho r s  inc lude  the  externa l  magne t i c  field in  their  ca lcu la t ion ,  a n d  it  is clear that ,  
in  v i r tue  o f  genera l  s ta t i s t ica l -mechanica l  a rgumen t s ,  the stat ic f o r m  (126) is unaffected 
by  the presence o f  B 0 . 

E q u a t i o n  (126) c an  be used to der ive the express ion  for  the D e b y e - H i i c k e l  pa i r  
co r re l a t ion  func t ion .  N o t i n g  that ,  for  the warm,  coll is ionless p lasma,  

ELL(k, O) = 1 + (K2/k2), K 2 -~  ~noe2/% (127) 

wi th  or  w i t h o u t  the external  magne t i c  field, one  is led to the D e b y e - H i i c k e l  pa i r  
co r re la t ion  func t i on  27 

--/3e~/e~ --/3e~ e - ~  (128) 
g ( k )  - -  ~c 2 + k ~ ,  g ( r ) - -  % r 

3.2. Nonrelativistic FDT for Ion-Electron Plasmas 

Description of the Unperturbed System. Now we extend the model to 
i nc lude  the  i o n  as well as the e lec t ron dynamics .  Let  N be the n u m b e r  o f  e lectrons 

~3 See Ref. 25, p. 118, equation cited between (14.24) and (14.25) for the fourth ("static") form of 
the FDT. 

2~ See Ref. 8, p. 22, Eq. (82). 
~ See Ref. 5, p. 89, Eq. (30). Remark that our P(k, t = 0) and ichimaru's form factor S(k) are the 

same: P(k,  t = O) = noS(k). 
26 See Ref. lc, Eq. (2.22). 
27 It is interesting to note the following: For just two test particles in equilibrium, ignoring the effect 

of the medium, g(r) = e-t~r -- 1, where r is the separation distance and if(r) is the Coulomb 
potential with Fourier transform r = e2/Eok 2. However, the effect of the medium is such that 
the pair correlation function can be expressed in terms of an effective potential, ~(r) ("potential 
of an effective force," see, for example, Ref. 27, pp. 481, 482, 492-495) as g(r) = e- t~ t~  - -  1, 
rather than in terms of the bare potential r Since the interaction is considered to be weak, we 
then have, approximately, g(r) ~ -- f ie(r) ,  or, in Fourier language, g(k) ~ --floP(k). In general, 
it is difficult to determine r It seems to be reasonable to assume, however, that, in some approxi- 
mation, this potential is identical with the potential surrounding a test particle and its polarization 
cloud in a plasma. Thus, to simplify the calculation, we set B0 equal to zero (the results are unaltered 
by the presence of the external magnetic field), so that the dielectric tensor is diagonal. Considering 
now a test particle with charge e and constant velocity v0 ; the potential surrounding the test 
particle and its polarization cloud in the moving coordinate system where cb is stationary is 
~b(k, co) = 2~rS(o~ -- k" v0) ~(k)/ELL(k, o0), whence 

�9 (k)  = r t = 0 )  = ~ do~r co) r  

J_~o 27r ~t'L(k, k " v0) 

This is velocity-dependent. An obvious (although crude) approximation seems to be to set v0 equal 
to zero. This is identical to the previously derived result if, and only if, 

~LL~, 0 ) ,  O) ~LLOc ~ no t nofi?P(k) 

which can also be written in the form (~4/k4) --  (K2/k 2) eLL(k, 0) -b eLL(k, 0) -- 1 = 0, with solution 
eLL(k, 0) = 1 + (K2/k2). This shows that the identity of the exact FDT result and that of the 
crude static-test-particle model is a consequence of the particular algebraic form of eLL(k, 0). 
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(each having charge --I e [ and mass m as before) and N / Z  the number of ions (each 
having charge + Z I  e [ and mass M). Here, the infinitesimal element of phase volume 
will be 

d r  = d3xl "'" d3XN d3pl "'" d3pN d3Xl  "'" d zXN/ z  d3P1 "'" d Z P N / z  " ' '  d3Aq "'" d3Eq "'" 

(129) 

where Xj and Pj are t he j th  ion coordinate and momentum, respectively. 
The stationary and homogeneous state of the system in the infinite past is again 

characterized by the macrocanonical distribution (76), where now of course, the ion 
kinetic energy �89 ~ = / z  MVj~  must also be included in H ~ in (77). 

The equilibrium microscopic electron charge and current densities are given by 
(82) and (83). The corresponding ion densities are 

R~ t) ----- Z[  e I Z 3(r -- X;(t)) (130) 
J 

J~ t) = Z I e [ ~ Vj 3(r --  Xj(t)) (131) 
J 

These show a greater variety of relevant current correlation tensors: 

O(L')(k, r, B0) = (1/LZ)<j~.(t)j~ - -  r ) )  ~ (132a) 

Q('i)cu r, Bo) (1/L3)<j~,.(t) o . . . - - ,  = JZk.( t  --  7)7 o (132b) 

Q(.?)(k, ~-, Bo) =- (1 /L3) (J~176  - -  r ) )  ~ (132c) 

Q(")~  % Bo) ( 1 / L 3 ) ( j o ( t )  o .~ ..., : J~ - -  -c)) ~ (132d) 

while the total current correlation tensor is given by 

()(ee) [)(el) o(ie) ()(ii) Q.~ = ~_... § ~ . .  + ~ . .  + ~..~ (133) 

The corresponding forms of the charge density correlations and of the typical relation 

P(e~)(k, co, B0) = (1/eo~(k �9 Q(~)(k, co, B0)" k (134) 

are obvious.  2s Then,  fo l lowing the method  o f  calculat ion presented in (94), one  can 
show that 

Q(~)r,. %%2 ~ttv, o(ii) l~ m %%2 ~.. 
.~ t " , ~ ' = 0 ,  Bo) - -  ~ . . . .  . . , ~ = 0 ,  Bo) = Z ~  

(135) 
Q(ei)ok = o( ie) (  k .~ ._, r 0, B0) = 0 = ~.~ . , ~" = 0, B0) 

28 F rom the reality of  P('t~(r, t, Bo), microscopic time reversibility, invariance under spatial inversion, 
and invariance under reversal of  Bo [P depends on Bo only as r Bo J and (k .  Bo)2], one finds that 
PCa)(k, ~o, Bo) is also real and that P('il(k, w, B0) = P(t,)(k, co, Bo). Hence, f rom (139), g,i(f) = 
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For the calculation of the equal-time charge density correlation, it is convenient to 
adopt the notation 

die = d3xl d3pl, dl i  ~ d3Xz d3P1 

The two-particle distribution functions are given by 

N )  
a( l~ ,  2~) : N ( N  -- 1) j" f2 ~ d3~ "" dN~ e l i . . ,  d ( -~-  . . .  a3A, ... aaEq ... (136a) 

N N - 1 )  a(-Zi G(ll ,  23 = 7 (-2- j" ~o d3~ ... N ) dl ,  .-. aNo-.-d"A,-., d~E, ... (136b) 

N 
d2~ dN~ dl i  d3~ ... \--~ . . . .  d3A, ... d3E, ... (136c) G(1,, 2i) = N ~  i 

etc. One then defines the corresponding pair correlation functions g , , ,  g~i, and g,~ 
in the same way as for the electron plasma. For example, 

G(1,, 2,) = Fez(l,)Fion(20[1 + g~,(] x~ -- X e 1)], (137) 

when Fel and Fion are equilibrium electron and ion one-particle distribution functions 
normalized so that 

f Fel dap = no, (138a) 

f e lon  dzP = no/Z (138b) 

Equations (136)-(138) then permit us to evaluate the equal-time density correlations 
in terms of the pair correlation functions. The results are 

P(~")(~, ~- ~ 0, Bo) --= eme,~no2[1 + g~(~)] + Z,~e2no 3(~) (139) 

wherem = e , i ; n = e , i ; e ~  ~ - - ]e l ,  e i =  ]el;Z~----- 1, Z i i = Z , Z ~ i - - - - 0 .  

Linear  Response Theory .  Now, the introduction of the small external 
agency A into the system produces the perturbation expansions (99)-(101) and 

Z2e 2 ~/z 
J(r, t) = 3~ t) -- ~ ~ A(Xj, t) g(r -- Xj(/)) (140) 

J'=l 

where 

H'  ----- --(1/L 3) .~k,(t)[j~ + J_~ (141) 

Then, upon following the method of calculation presented in Section 3.1, one finds that 

[300 "~ d 0 
/2'(r, t) = ~ ; |o  dr Au~(t -- ~-) ~ [j_ku(t -- ~') + J~ -- ~r)] (142) 
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which, together with (109) and (135), leads to the result 

f �9 0 , B0) q- r. B0)] q- %o0o~Ak,(t) (143) <s~(t)) /3 d~ & . ( t  " ' (~176 o(~)a ,  
O 

. t  0 The value of ~ J k ~ ( t ) )  is again given by (111) which, when combined with (143), 
yields the expectation value 

f ( . ]k~( t ) )  /3 d r  E k u ( t  ,~(ee)t,. Bo) -I- t')(~i)gk = - -  r ) t~g .~  tr . ,  r . . . . .  _ ,  r ,  B0)] (144a) 
0 

with subsequent Fourier transform 

f , o(e~)(k , fjkv(o0)) = /3/~k.(o0) do0" 8+(o0 -- co . . . .  )tg.~('~)"'tK, co, B0) -? _.~ . , co, B0) ] (144b) 
- - o 0  

Similarly, the expectation value of the ion current density is found to be 

, , o ( i e ) ( k  �9 (Sk~(o0)) ----- /3/75k.(00) dco' 8+(o0 -- co')[Q(.i~)0c, co, Bo) ~- ~,,~ . : ,  co, Bo) ] (145) 
- - c o  

F l u c t u a t i o n - D i s s i p a t i o n  T h e o r e m s .  Eqs. (144b), 
sponding Ohm's laws 

<A~(co)> = ~.~ (~)"t~, o0, Bo) &.(o0) 

*(,)n. co Bo ) ~k,(o0) 

(145), and the corre- 

(146) 

(147) 

can then be contracted into the first concise form of the FDT for the electron and ion 
external condnctivities: 

S ~(~)"~ Bo) /? do.' a+(o0 o0') Z ~.~ , , o , .  = o~ t,~, co, = -- O(mn)~k ' B0), (m e, i) (148) 

The important feature that now emerges is that, in contrast to the case of the electron 
plasma, the FDT links two transport coefficients with the three correlation functions. 
Therefore, the knowledge of the transport coefficients is not sufficient to determine the 
correlation functions, but, rather, only a certain combination of them. This feature 
will reappear in various guises in the sequel. Upon summing (148) over m and taking 
account of (133), one then obtains the corresponding FDT for the total external 
conductivity b = b (~) + &(i). 

The dissipative part of ~ )  is readily obtained by adding (148) to its Hermitian 
conjugate: 

co, Bo) 1 fCO(~)& Bo) + -12 fiQ(~")V(k, w, Bo) 

i (~ dw' o ("z~)^(k ' 
+ ~ 5 ~  ~ ~ - ~o' ~ ."  " - '  o0' ~")' 

( m = e , i ;  n = e , i ;  n @ m )  (149) 
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Equation (149) can also be restated in terms of  the internal response function 
(a ('~) " D-I) ̂  by recalling from (15) and (19) that  

~r(m) __~ -- leo%a(m) �9 D-1 �9 A (150) 

where now 

O = A - - a = A - -  ~ a (~) (151) 
n=e,i 

In particular, when there is no external magnetic field acting, it can be shown that  

~(L'~)(k, co) ]3we(k) ~, P ( ~ ' ( k ,  o9) (152) 
Im ELZ(k, ~)  -- 2e2 . . . .  i 

Im DTT(k ,  o9) - -  2%(kZc z -- co2) ~ Q('rn)(k' co) (153) 
r 

(m  = e , i ) .  

To derive the static F D T  in the presence of  an external magnetic field, we first 
observe that  only the longitudinal projection of the symmetric part  of  (149) is relevant, 
so that  this, together with (150), ultimately gives (see footnote 28) 

k "  [a('~)(k, co, Bo)" D-Z(k, co, Bo)] ̂ "  k -- /13cor ~ P(~)(k,  co, Bo) 
2e 2 

(m : e, i) 

Equation (154) can also be written in the form 

(154) 

2 P("O( k, ~" = O, Bo) = m,  Bo) 

ie ~ f ~  dco k .  [a(~)(k, ~o, Bo) �9 D-l(k, co, Bo)] ̂ .  k 
, o  

(m----- e, i)  (155) 

The calculation in (155) can be carried further by exploiting the Kramers-Kronig  
relation 

f [ai'~)(k, co, Bo) D-i(k, (o, Bo)] v / ~ &o' [a(m)(k, co', Bo) -z , . . . .  , .D  (k, eo, Bo)]" 
77" _ ~  ( .O - -  O )  

(156) 

(m ----- e, i) with oJ = 0. Hence, 

e 2 
P(~)(k,  ~- = 0, Bo) = f l ~ ( k )  k .  [tt(m)(k, ~o = 0, Bo). D-l(k, oJ = 0, Bo)] v"  k 

e ~ o~(L~)(k, o) = O, Bo) 
-- fleck-) Re eLf.(k------ ~ ~o -- if, B~)o) (m = e, i) (157) 
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Then, upon combining (157) with the spatial Fourier transform of (139), one finally 
obtains the static form of the FDT for the pair correlations: 

emen - . .  ~ LL i ~  : .=~,i ~ g~(tc): 1 [ fino~( k)l t~e -~LZ(k,~ coo~ 0,0' Bo)B~ Z ~ ]  (m : e, i) (158) 

with gei(k)  ~- gie(k)  (see footnote 28). Obviously, the two FDT equations given by 
(158) are not sufficient to determine the three independent correlation functions g ~ ,  
g~i, gii �9 In order to evaluate these correlations separately, one must resort to non- 
equilibrium techniques (or to other statistical-mechanical approaches). 29 

3.3. The Relativistic Fluctuation-Dissipation Theorem 

While the nonrelativistic and relativistic equations of motion differ markedly, 
one can show that the various forms of the FDT for the relativistic plasma are the 
same as the corresponding forms for the nonrelativistic plasma. In the model where 
only the electrons play the dynamical role, the unperturbed system with interaction is 

2~ The idea of the uncorrelated "dressed" electrons employed in the nonequilibrium derivation of the 
longitudinal FDT for the electron plasma (cf. footnote 21) can be extended to incorporate a system 
of uncorrelated dressed electrons and ions (Ref. 28; Ref. 5, pp. 85, 86, Eqs. (20a, c); Ref. 3a). 
Taking the arbitrary electron and ion distribution functions as Fe(v) and F~(v), respectively, a non- 
trivial generalization of the relation quoted in footnote 21 will be (we take Z = 1) 

1 + ~i(k,~o) ~ f  P~(k, co) : 2rmoe 2 e(k, o~ d3v Fe(V ) ~(m -- k '  v) 

%(k, ~o) 
+ 2~rnoe 2 ~ _ d3v F~(v) 3(~o--k �9 v) 

,/ 

P~(k, co) : -- 27rnoe 2 

- -  27rnoe 2 

which, when combined, yield 

Boo(k, o,) + Po~(k, ~o) 
2rrn0e 2 

[e(k, co)[ 2 

[1 + c~(k, co)] c~*(k, oJ) f 
,(k, ~o) E*(k, oJ) d3v F~(v) ~(oJ -- k .  v) 

%(k, co) [l +_ %*(k, co)] ( d3v F,(v) ~(oJ -- k. v) 
e(k, o 0 ~*(k, oO J 

x l[1 + c~(k, ~o)] f d3vFe(v) 3 ( o ~ - - k . v ) - - % ( k ,  oJ) fd~v Fi(v) 8 ( o J - - k . v ) l  

In particular, for an equilibrium electron-ion plasma, this becomes 

P.Xk, ,o) + P.(k, ~o) -- k I ~(k, ~o)I ~ [1 + ~(k, ~o)f~ -- %(k, ,o)fi 

and, in view of the relation which connects %" with Fe(~o/k) and ~" with F~(o)/k) (see footnote 21) 
in the Vlasov approximation, this last expression is identical to (152). 
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again characterized by the macrocanonical distribution (76) and by Eqs. (82) and (83), 
where now 

% B 2 
H~ = E 7 irnc2 + ~ ~ (E,,E_,, + e21~T.~.A,.A_,~) + ~ o  L3 

i = 1  

(159) 

yi = (1 -- v~2/c2) -1/2 (160) 

[Pl -- (e/L ~) 52. A_q(exp - - iq-  x/) -- eAo(xi)l/m 
vdx~, p~, {A,~}) = {1 + [1/(rne)Z][p~ -- (e/L ~) Zq A_,~(exp -- iq" xi) -- eAo(xi)]2} ~/2 

(161) 

The equal-time density correlations for the relativistic electron plasma is still given 
by (98), whereas, for the equal-time current correlation tensor, one finds that 

3 ~ - ] /  (162) 

The introduction of the small external agency A then produces the perturbations 
(102), (108), and 

, e ( vivi~ ./~.(x, t) (163) 
v,: -- m y71 1 - -  c 2 /  , 

j'(r, t)  - -  ee (1 - -  vivi]  m ~ 77z -~-!  �9 A(xi,  t) 3(r -- xi(t)) (164) 

We are now ready to calculate expectation values according to (109). From (89), 
(108), and (162), it can be shown that 

~ f i - ] /  (165) 

while the appropriate ensemble average of (164) is given by 

! 

• •O•02•••t• 
/ V 2 ~\o 

\ \ 
(166) 

Consequently, addition of (165) and (166) yields (112), and, hence, the Fourier trans- 
form (113) for the expectation value of the electron current. Since the subsequent 
FDT relations (114), (117), (120)-(123) and (126) are then formulated independently 
of  the particle dynamics, it follows that these relations remain unaltered for the 
relativistic electron plasma. 

Finally, it is a simple matter to pass to the more general relativistic plasma model, 
where the ions, as well as the electrons, are dynamical. Our analysis shows that the 
FDT relations (148), (149), (152)-(154), and (158) are entirely valid for the relativistic 
ion-electron plasma. 
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3.4. S y m m e t r y  Relat ions 

Both the current correlation tensor and the dielectric tensor satisfy certain sym- 
metry relations which are essentially consequences of spatial and temporal inversion 
invariance properties of the system. Such relations were first stated by Onsager/m 
and we shall now establish them using the FDT. Since the microscopic current 
densities obey the Newtonian equations of motion, then, upon time reversal accom- 
panied by the inverstion of the external magnetic field (the microscopic magnetic 
field automatically changes its sign following time reversal), the microscopic current 
undergoes the transformation 

j.(t, Bo) --- --j .(--  t, --Bo) 

which, however, leaves the current correlation tensor invariant, i.e., 

Q..(r, t, Bo) = Q..(r, - t ,  --Bo) (167) 

Let us first consider the case of electron plasmas. From (167) and the reality of 
Q.~(r, t, Bo), 

~- = Q.~(--k, co, Q..(k, co, Bo) Q.~(k, --co, --Bo) * --Bo) (168) 

Recalling next the Hermiticity of Q [see Eq. (115)] one can write 

�9 --Bo) Q~.(--k, co, --Bo) (169) Q,~(--k, co, -- 

so that contraction of (168) and (169) yields 

Q.~(k, co, Bo) = O~.(--k, co, --Bo) (170) 

Since (170) is now co-independent, the external conductivity must satisfy the same 
symmetry relation 

O,~(k, co, B0) = ~v,(--k, co, --B0) (171) 

in virtue of the FDT (114). In turn, Eq. (17l), together with (20) and (15), gives similar 
relations for %~ and e,~. Moreover, since the system is invariant under spatial 
inversion, it follows that 3~ 

O.~(k, co, Bo) = O~.(k, co, --Bo) (172) 

e.~(k, o4 B0) = ~r~.(k, co, --Bo) (173) 

%,(k, co, Bo) = e,,(k, co, --B0) (174) 

On the basis of (174), we now establish a symmetry relation for the tensor components 
of e,~. To do this, we observe that the space spanned by three coordinate axes in the 
directions of the real unit vectors k, k • 13 o , I30 • k • 130 , is a suitable representation 

~~ example, Ref. lb, p. 483, Eq. (9.25); Ref. 2c, p. 581, Eq. (6.9); Ref. 13a, p. 143, Eq. (2.31). 
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for r Clearly, each member of such a dyadic tensor index refers to a direction along 
one of the axes in this space. Then a reversal in B 0 leads to a reversal in the signature 
of the (dielectric) tensor component if one, and only one, index member points along 
k • 130 ; otherwise, E,~ is invariant under B0-reversal. This, together with the Onsager 
equation (174), results in the symmetry relation 

I E11 El2 El3) 
E(k, 09, Bo) = --E12 E22 E23 

E13 --E23 533] 
(175) 

in either the k- or Bo-system. Evidently, Q(k, co, Bo) satisfies a similar symmetry 
relation. In particular, if there is no dissipation, the dielectric tensor is Hermitian, ~b,8~ 
so that (175) now reads 

t . . . . .  l 
Ell /El2 E13 ) 

E ( k ,  co, Bb) = " " E22 - ~ q ~  ' i ~  
t �9 t !  "13 --1E23 E'..I 

Finally, we note that the cold-plasma form 

1-,1  00 I ~(~o, B0) = - - q ~  E2~ 

0 0 ca3 

(176) 

(177) 

in the Bo-system is a consequence of (175) and of the k-independence. 
In the case of the ion-electron plasma, Qie,) obeys the symmetry relation (170), 

while QI~I does not (since Q(~il is not Hermitian). Therefore, while the sum of the 
electron and ion conductivities obeys the Onsager relation (172), one cannot assert 
from the FDT Eqs. (148) that ~(e) and 6 c~) separately satisfy such symmetry rules 
(although this is certainly true in the case of models discussed in Ref. 21; a breakdown 
of symmetry cannot be expected in any approximation not of higher order than the 
Vlasov scheme or for k = 0). 

3.5. Kubo Sum-Rule  T h e o r e m  

Starting from the FDT relation (114) for an electron plasma, one can generate an 
infinite set of relations between frequency moments of the dissipative part of the 
external conductivity and appropriate time derivatives of the equal-time current 
correlation tensor. This is the Kubo theorem, a3bl and it includes Eqs. (49), (52), 
and (56) for ~ as lowest-order sum rules. 

For the derivation of the Kubo theorem, it will be necessary to exploit the parity 
relations 

and 

Q(~.l(k, t, Bo) = Q(..l(k, t, --Bo) = Q(.~)(k, --t,  Bo) (178) 

Q~.](k,  t, Bo) = --QE.v](k, t, --Bo) ~ --Qt.~](k, - t ,  Bo) (179) 
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A typical Kubo sum rule for, say, the symmetric part of & can be generated 
by taking the frequency moment co 2n (where n = 0, 1, 2,...) of the FDT (114). To 
illustrate, let n = 1, so that 

fo do) 2 ~, Bo) 13 do) co ~ co a(,~)(k, co, = do)' 8+(co -- co') Q(,,)(k, co, Bo) 
- - c o  - c ~  - - c o  

= --rr/3 dtQ<~,)(k, t, Bo) 8"(0 
- - c o  

Remark that we have used the parity rule (178) to arrive at this result. 
Using the technique of (180), we now generate the hierarchy of f-sum rule 

moments for the four objects 

~L~(k, o~) ~ ( k ,  o~) 
A(k, r D-l(k, co, B0)- A(k, co), k .  D-~(k, co, Bo)" k, ELL(k, W) '  Drr(k, co) 

For the first of these, it is convenient to start from the FDT (120) written in the form 

--2ieocO A.~(k, co) D;-S(k, co, Bo) AB~(k , co) 5 f~  = aft e~t~,tK,~ t, B0) (181) 
- - c o  

Then, to obtain the hierarchy, multiply (181) by co 2~, integrate the result over the entire 
frequency spectrum, and note, from the even parity in co of the left-hand side and the 
parity relations (178) and (179) that only the symmetric tensor elements are relevant. 
For all positive integral values of n, including zero, the result is 

f ~  do) co 2'~+1 A.~,(k, co) Im D~-~)(k, co, B0) Zle~(k , co) = (--'f '  r Q(,,)(k, t, B0)L_ ~ 
" 2% [~-T ~ 

(182) 

For  the antisymmetric elements, one can similarly show that, for n = 0, 1, 2 ..... 

f ~ &o co ~(~+1> A,~(k, co) Re -z B0) A~v(k, co) D[~i31(k, 6% 
0 

= (_)n ~ / Ot~/gg~+l Q~,va(k, t, B0)],=0 (183) 

and, for n = --1, one obtains (63) in virtue of the FDT (114). Equations (182) and 
(183) are the generalized f-sum rules. Upon setting n = 0 and taking account of (94) 
and the evaluation of the equal-time current-correlation time derivative in Appendix C, 
we recover the nonrelativistic sum rules (62) and (64). For the corresponding relativstic 
rules, the right-hand sides of Eqs. (62) and (64) should be multiplied by the factors 
@-1[1 -- (v2/3c2)]) ~ and (7-2[1 -- (2v2/3c2)]) ~ respectively [cf. Eq. (162) and Appen- 
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dix C). One also recovers the 6-sum rules reported by Kubo for quantum-mechanical 
systems 31 by inserting (60) and (61) into the above n = 0 case of (182) and (183). 
Apparently, the higher-order equal-time current correlation derivatives (n >~ 1) 
cannot be calculated without a knowledge of interactions. In connection with this, 
we recall from Section 2.3 that the corresponding higher-order sum rules do not 
exist, due to the eventual appearance of thermal terms of the order too2k2v2/to 4 in the 
expansion similar to (67). 

Let us briefly address ourselves to the evaluation of the relativistic brackets 
(7 , -1 [1 -  (v2/3c2)]> ~ and ( y - 2 1 1 -  (2v~/3d)]) ~ Since ~ , - - [ 1 -  (v~/c2)]-1/2 is the 
relative energy (rest plus kinetic) of an electron in the electromagnetic field, the 
ensemble-averaging operator takes the form 

/~mc 2 f 
(...>o _ K2(fi mc2) j~ d~ ~,(~2 _ 1)1/2 [exp(_/3mc,~,)](...) 

for the equilibrium system, (29) where K2(fimc ~) is the modified Bessel function of  
order two. Letting (3~ 

.~  dy ~,'~(9, 2 -- 1) 1/2 exp(--fimc~y) 
G,(fimc ~) = 

f~ dy ~.,(~,2 _ 1)1/2 exp(_flmc2y) 

[3rnc 2 f~  d~ ~,~(~2 _ 1)1/2 exp(_flmc2~,) 
K2(fimc~) , (184) 

one can write 

<~-1[1 _ (v2/3d)]>o = w + �89 

= -~Go(flmc ~) + �89 2) (185) 

[where Go = Kx(flmc2)/K2(fime2)], and 

<~,-2[1 _ (2v2/3c2)]>o =- �89 + 2(V-4>o 

= �89 2) + ~G_3(fimc ~) (186) 

To generate the Kubo hierarchy for the longitudinal projection 

k �9 D-a(k, co, B0) �9 k 

we multiply the F DT (121) by to2.+1 and integrate over all to. The result is 

[ 82(~+1) 
J o do) to~'~+Xk �9 [Ira D-l(k, co, Bo) ] �9 k = (_),+1 2%k f t ~  P(k, t, Bo)jt_o_ (187) l 

Equation (187) is the generalized longitudinal f-sum rule, which, for n = 0, reduces, 
as the case may be, to either the nonrelativistic rule (65) or its relativistic counterpart 
[right-hand side of (65) multiplied by <~,-1[1 -- (v2/3c2)]>~ 

31 See Ref. 2c, p. 584, Eqs. (8.10), (8.19); Ref. 13a, pp. 155, J56, Eqs. (2.85), (2.87). 
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Now, suppose that there is no external magnetic field acting. Then Eq. (182) 
splits into the pure longitudinal and pure transverse f-sum rule moments: 

do) co 2~+z Im -- doJ co 2~+1 Im J"L(k' co) 
' o ELL~, ,o) o ELL0X, ~o) 

= (_)n+l 2"ok ~- [ ~  POx, t)],= ~ (188) 

~o doJ ~&'-~(k'c 2 -- 005) Im JT(k,  co) _ (_)~+2 ~r/3 [ 8 2'' QTTO~, t)],_o f (189) 
J o DTT(  k ,  co) ~ e  o [ cqt2'z _ 

Remark that one could alternatively derive (188) from (187). Equation (189) can he 
stated in the more preferable form 

do. co 2~+~ Im JT(k,  co) _ ~rfi ~ (_),+~(kc).(~_.) [ ~"  
(Jo DTTO~, co) 2e 0 ,=o t~[g~ OrT(k' t)j'=0 ] 

by taking account of (70) and (71). Upon settingn -- 0, Eqs. (188) and(189)reduce to the 
rules (66) and (71) with the right-hand sides multiplied by the factor (7-~[1 -- (v2/3d)]> ~ 
for the relativistic case. 

In Appendix D, we present a brief review of Kubo's sum-rule expansion 
technique tlab~ for the external conductivity. The resulting infinite sets generated therein 
are identical to those generated by the FDT moment method. Concerning the denom- 
inator expansion of the Kramers-Kronig relations given in this appendix, it is 
especially important to remember that the extent of each such expansion may be 
profoundly limited by the particular choice of plasma model and by the ensuing 
eventual divergence of the frequency-moment integrals (see footnote 14). Con- 
sequently, higher-order frequency moments of the dissipative parts of the external 
conductivitiy tensor and their corresponding equal-time current correlation time 
derivatives may very well not exist in the Kubo sum-rule theorem. 

A P P E N D I X  A 

In order to see in detail the boundedness of or(k, co = 0, Bo) and of ~r(k, co = 0, Bo) 
and D-l(k, co = 0, Bo), we cite separately the zero-frequency results of four simple 
plasma models. 

Model 1. W a r m ,  Collisionless Electron Plasma (Vlasov Plasma) (2z) 

The co-+ 0 behavior in the k-system [k = (0, 0, k), B o = (Box, O, Bo~)] can be 

D-l(k, co --+ 0, B0) -+ 

const  const ~ico ) 
const ~-4w I (A.1) 

~-~--ko ~:~/k 2 ) 

l 
~o~ ~ i ~  3 ~o~ 2 } 

~oJ 2 ~'~co 2 , (A.2) 
- k V ( k  ~ + ,~) 

shown to be 

~ ( k ,  co --~ O, B0) --~ 
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Clearly, 
aLL(k, co -~  0) ~ ~:2/k2 (A.3) 

and,  in the zero-frequency limit, those components  of  the electric polarizabil i ty 
which correspond to the constant  elements of  cy must  diverge as 1/co. The longitudinal 
conductivity is, however,  zero, and the longitudinal polarizabili ty is bounded  in this 
model.  

Model 2a. Cold, Collisional Ion-Electron Plasma 
with Constant Collision Frequency 

I t  is unders tood in this model  that  the collisions take place as if they were 
generated by fixed scattering centers (no drift). As co tends to zero, one finds, in the 
B0-system [k = (k~, O, k,), B 0 = (0, O, Bo)], that  

where 

v 2 § co~ v2 § coc 2 
v2 _}_ (~i) 

p2 .~ coO2 

+ azco 0 

i --~ ~o P 

a --~ o'~ e) 

v 2 + f2~ 2 v~ § ~2~ 2 
v2 

v 2 § ,S'-2,~ 2 

O. 0 = o.~e) ~ cr~) % e 2 = ~-tcoo § ~202) 

(1.4) 

(A.S) 
az - -  --ie0(co02 § ~20z)/co~O~, as = --%(co02 -q- s - -  C2~)/co~2O, 2 

Note  that  all the leading terms are constant,  and, thus, the longitudinal polarizabili ty 
will not  be bounded  any more.  

Model 2b. Cold, Collisional Electron-Ion Plasma 
with Infinitely Heavy Ions 

The dc cr for  the electron plasma is given by 

cr(k, co = 0, Bo) = cr~ ~) v~/(v 2 ~- co~ ~) (A.6) 

Al though there is a change in the off-diagonal elements, this does not  alter the previous 
conclusion. I t  can be shown, for  bo th  cases, however,  that  the external conductivi ty 
vanishes: 

~rLZ(k, co = 0, Bo) ~ 0 = OrL(k, co = 0, Bo) (A.7) 

In fact, this is a general result valid for  any classical p lasma model  (see footnote  12). 



The Electrodynamics and Statistical Mechanics of Linear Plasma Response Functions 4S7 

All the elements of  D -~ are still at least of  order co: 

{ ,~ioJ ~-<o 2 -~ico } 
O-t(k, co ~ 0, Bo) -+ ~ o  ~ ~ w  2 '  

,~,ioJ t 
(A.8) 

Model 3. Cold, Collisional Ion-Electron Plasma with Constant 
Electron-Ion Collision Frequency (22) 

This is a more realistic model than Model 2a: The collision process is described as 
taking place between electrons and ions following their respective trajectories (the 
main difference originating from the common drift of  the electrons and ions). In the 
Bo-system, one finds that, as co -~ 0, 

l a l c ~  -- l~20J 2 i 1 
-> I a1~~ ~o + i cO~,eff ~ l'eff elf a~r - -2  ~ -  a2oY" r c 

V~eH 
O.) e,.~c al~176 

G o 

(A.9) 

where q0, a l ,  and a2 are defined in (A.5) with v replaced therein by an effective ion-  
electron collision frequency Veft. Due to the common drift, the dc conductivities 
vanish as in the collisionless model. Consequently, some elements of  D -z also dis- 
appear  faster: 

D-Z(k, co -+ O, Bo) --+ ~-~co ~ ~-,<o 4' (A.IO) 
,--.-,ko I 

One can readily convince oneself that, in the above models, all the elements of  
a(k, co = 0, B0) �9 D-Z(k, co = 0, B0) are bounded. 

A P P E N D I X  B 

I f  the customary plasma expansion scheme (expansion in e2n and in e ~ regarded 
as independent) is employed to calculate a, the sum rules with n = 0, --  1 in Table I I  
are obviously satisfied independently to any order, while the sum rules with n = 1, 2 
are exhausted in the Vlasov approximation ([eel~ since the constant values of  the 
integrals are of  the same order; the integrals of  the higher-order contributions should 
yield zero. 

We now present some detailed calculations to show that, for a warm, collisionless 
electron plasma in a constant external magnetic fiield, the (Vlasov) components of  
a (19,~1~ indeed behave in the expected way. Consider first the element (written in the 
Be-system) 

~1 = (~o2/~ ~o(e-"/~) ~ rz%(~) Z(~.) 
. = - - o o  

82zlz13-6 
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where 

~ = ~ 0 -  n ~ ,  

and 

~o = ~ 2 ] k~'  
k ~  2 

/s = /7,/~(.0c2 

1 f~  d~ Z(~.) = ~ w  -,~ ' ~ -  '~,, exp(--~"~) 

1 ~o d~ 

is the plasma dispersion function, with I,(~) the modified Bessel function of order n. 
The calculation proceeds as follows: 

doJ . (k, 1 ~oo2e -" Z nV,,(ID ~ ~ da, 
__it .~ f_o~ ~ 11 o~, Bo) ---- ~v/~ r /~ j_~ ~ Co exp(--~,, ~) 

- ko~ ~Y~n~I.(t.)~/~ _=(~ .+ .5 )~exp ( - -~ .~ )  

(.O 02flWt e - ~  
k~ 2 21~ ~ n~:"(t~) Re Z'(--n~) (B.1) 

On the other hand, 
50 2 e - u  

~n(k, w --+ 0, Bo) --+ ~o fro ~ Z nZln@) Z(--n~e) + ~176 e-" o02 k~ ~ 2~ ~ n2l"(IX) Z'(--n~) 

and, since Re Z(--n~o) has odd parity in n, one finds that 

~ix(k, o~ --+ 0, Bo) --" w~ e-" k~ 2 21 x ~ n2In(t ~) Re Z'(--n~e) (B.2) 

Comparison of (B.1) and (B.2) then yields the sum rule 

fct~ tt t 1 ~  dco 
-~ - -~  an(k, ~o, Bo) ----- an(k , o~ ----- 0, Bo) (B .3)  

For the remaining elements of a (in the B0-system), one can similarly show that 

1 . ~  (~ dw ,, c~o2flm e-"~ReZ,(_n~)[(n~ § 2 / ~ _ 2 t ~ _ ) i , ( / z ) ]  
~r , _ ~ % 2 ( L w ' B ~  kfl 2/z 

= ~ ; O , ,  ~o = 0, Bo) (B .4)  

1 ~ [| doa , c~176 I1 -- 2e-" Y' I~(/~) n~ c Re Z(--n~c) ~ - ~  - g -  % ( k ,  ~o, Bo) - -  k .  2 

+ e-" Z L,(/~) n2[~ 2 Re Z'(--n~) I 
= ~ 3 ( k ,  o~ = 0,  Bo) (B.5)  



The Electrodynamics and Statistical Mechanics of Linear Plasma Response Functions 459 

l ~ f  ~ doJ ,, cooZfim e-" t~  
~" -oo ~ c~13(k' m' B~ k~ ~ (2k*)1/~ n/~(k*) Re Z(- -n~)  

-- ~ Z n2I, dk*) Re Z'(--n~)l  

= ai~(k , r = 0, B0) (B.6) 

i 
f ~  d~o %(k, ~,, Bo) = ~~176 e-" Z . [ U ( t ~ )  - i.(k*)] Re z(-.~o) 

-| G C2 

= --eola;~(k, w = 0, Bo) (B.7) 

Observe also that, in the k-system, 

1 ~ fro dw ,, 1 2 , , O, Bo) ~ ~ O~LL(k , co, Bo) -~ {k x alz(k , co O, Bo) -]- 2k~kz%3(k, co 

-1- kz2 O~'as(k, co = O, Bo) 

= ~2//r  (B.8) 

We next focus our attention on the sum rule (55). The calculation for the Vlasov 
az2 (in the B0,system) proceeds as follows: 

s s 1 dw r co, Bo) c~ 2 n[I,/(k*) In(k*)] dw ~o exp(-- ~ ~) 

= wo2w~e-" ( 4  - -1 )  ~ n2I.(k*) 

d 
= Wo~w~e-,(~-~ - 1)(k*2 d@.O § k*-)--/f--/~') e" = COoZCO~ 

(B.9) 

Where, in the third step, Bessel's equation is used to express the inconvenient n2I,&) in 
terms of the convenient I,(k*). 

Similarly, one finds that the Vlasov expressions for the symmetric elements of a 
exhaust the sum rule (48). 

A P P E N D I X  C 

Here, we present the detailed calculations for the equal-time correlation deriv- 
ative, 

1 (/t ' ~ ' ~  d .o o 
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Equation (86) permits us to write (C.1) in the form 

[@t Qr.~](k, t, Bo)]~=o 

= ~ ~ <Gv(0)v~.(0)> ~ 

ie2 ka ~ (vnv(O) vn.(O) vna(O)> ~ 
L 3 

e 2 
q- Z~ ~ (G~v(0) v+,.(0) exp ik '  [x.(0) -- x,~(0)]> ~ 

ie ~ 
La k~ ~, (v~(0) v~.(0) v~(0) exp ik .  [x~(0) -- x~(0)]> ~ (C.2) 

First, we note that all the odd velocity averages vanish, in view of the isotropy of the 
velocity distribution. The remaining second term also contributes nothing. To prove 
this, we first of all observe that 

e 2 
L~. ~ (G~(0) v~,(0) exp ik" [x~(0) -- x~(0)]> ~ 

~H o 
-- ~ ~ f d r '  ~2~162 ik" (x,, -- x,,~)] ap,,~ 

e2 f " 
- -  f lL 3 ~,~#~_ dr~ v,~ - ~ p ~  [~o exp ik .  (x~ -- x~)] 

e 2 
ap.. (c.3) 

where dr" = d{x~} d{pi} d{Aq r} d{E, r} indicates that, for convenience, we choose, in 
this appendix, to ensemble-average in the Coulomb gauge. Now, from the relativistic 
relation (190), 

�9 _ 1 (8~a v ~ v " ~ ) l P , , a +  2 v ~  my,~ ~ ~ (E-~a + iq~v,~AT-qa)(exp - - i q "  X,~) 
q 

aAoa(X~) I (C.4) 
- -  ev~o~ ~Xm~ 

for the ruth particle. Hence, 

& ) ~ _  1 (8~a v~,~v,.a @,~a_ 1 (8~ v~v~a ~v~, 

:since v~ = V~@n, x~, {A,r}). Equation (C.1) now reads 

[-~-t Q["d(k' t, Bo)]~=o = ~ ~ Q).~(0)v..(0)> ~ (C.5a) 

- -  n~ (C.5b) o+.Xo) \o 
5 / 

We now evaluate this expression both for a nonrelativistic and for a relativistic plasma. 
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Nonrelativistic Plasma 
Starting f rom the relation 

1 = _ e ~ Ar  (t)(ex p - - i q .  x . )  - -  eAo~(X.)] 
q 

in the Coulomb gauge, one obtains 

(C.6) 

whence 

(~"~ : m -s Z (E_q~ + iv,~aqaAT_q~)(exp --iq " x.)  - -  ev.a ~x .~  J 
r 

~p.. -- m t Op,~. + L -~ Op.----~ Z qaA-rq~(exp - - i q "  x . )  - -  e 8p.. 8x.~ ] 
q 

_ 1 [ ~ . .  e a 2~ro~(exp- - iq 'x - )  e ~Ao~] 
m 8x.~ mL a 8xn. q m Ox.. 

e 8A.r(xn) 8A.T(x.) e 8Ao.(X.) 8Ao~(X~) 
Oxo  Ox.o Ox.  ) 

(C.7) 

e e 

where B~ is the microscopic magnetic field. We note that  <B,~> ~ = 0 because (1) the 
classical plasma is not  diamagnetic, and (2) the system is assumed to be large (L a --~ oo), 
so that  there can be no surface currents on its remote boundaries.  Hence, for  the non- 
relativistic classical plasma, the equal-time current-correlation derivative is 

[ @  Q[.~l(k, t. Bo)]~_o -- ~~176176 ,o,[,~]~/9o~ (C.9) 

where ~o~ : t e IBo/m. 

Relativistic Plasma 

The relativistic calculation proceeds more easily if  one starts f rom (C.5a) and the 
equation of  motion, 

v~v.a~ e 3~a ( E L ( x . ,  {Ear}) + ~ , E~(Xl  , . . . ,  Xn) E}.v(X 1 , . . . ,  Xn p n ,  {A,T}, {Eqr}) = m7" ~ ] 

Then  

e - 1  

+ e < (  

(C . lO)  

) v..v.~ v . .E~  + E.~,<7,;lv..v.~(B.p + B0z)> ~ 
c 2 -~ 

(C.11) 
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The first and second terms on the right-hand side vanish on account of the inde- 
pendence of the equilibrium velocity-distribution function both of the transverse field 
coordinates and of the position coordinates which determine the longitudinal field, 
and in virtue of the vanishing of the average electric field. Only the correlation 

- -m tim ev~B dr  ~ ~.lv.~ {~Q~ + BOB)} 

: e " B 8 

_ e ~ / ( B ~  + BOB)) 

tim \ \  3c ~ / /  

survives in (C. 11). Note that we have again exploited the independence of the trans- 
verse field coordinates and the fact that (B,~) ~ -~ 0 for the large classical system. 
Then, ultimately, the equal-time current-correlation derivative is given by 

[ - ~  Q[.~](k, t, Bo)]t=o- 
(x)020./e ~]/ (C.12) 

for the relativistic plasma. 

A P P E N D I X  D - - S U M - R U L E  E X P A N S I O N  

Repeated integrations of the FDT (114) by parts gives 

 v.fk, Bo) = 

(ico)z ', Bo)],_o -f- "'" -~ (/co)n., [--~-ff- Q..(k, t, Bo)],=o 

(_).§ f e-§ 
-4- (io)).+z o d t e  i~t -8t.+ 1- Q.~(k, t, B0) (D.1) 

Now, the reality of Q..(r, t, B0), together with invariance under spatial inversion, 
leads to the reality of Q.~(k, t, Bo). Then, upon equating real and imaginary parts in 
(D.1), one obtains 

~ 2 - -~  Q.,(k, t, Bo) + fi O" t-o- co-- W ~ Q,,(k, t, Bo) t=o . . . .  (D.2) 

co--- Y - ~ -  Q,,(k, t, Bo) + .-. (D.3) 
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In the high-frequency limit (o)--+ oo), the usual denominator expansion of the 
Kramers-Kronig relations yields (see footnote 13) 

f O~.~l(k, co ~ oo, Bo) = 1 do '  oJ'6~".~l(k, co', Bo) 
7"/'0-)2 --co 

1 
f~  ~ ,  ,a.,. ,~. Bo) (D.4) "a'O') 4 - ~  ( t 0 )  ( 0  f f [ u v ] l . ~  0~'~ . . . .  

8('~,)(k, co -~ oo, Bo) = __1 f~  do),(Ti.~)(k ' co', Bo) 
7 7 6 0  d _ ~ o  

f - -  t ~  + 1 do)' ~o (~(,,)~, o)', Bo) + ... (0.5) 
7"/'(0 3 _ m  

Then, in an obvious comparison of (D.2) and (D.3) with (D.4) and (D.5), we see that 

f [ ] do)' o)'0t.~l(k, co', Bo) -- --~r]3 e o 2 T / -  Qr"~l(k' t, B~ t=o (D,6a) 

do)" co'Z'"(rE.~jt~.,'~" co', Bo) = ~ - ~  Qr.~l(k, t, Bo) (D.6b) 
0 t = O  

and 

f~  do)' (Ti.~)(k, co', Bo) = 7r13 Q(,,~)(k, t = 0, Bo) (D.7a) 
0 

co ~(.~)tK, - -  - ~ -  ~ Q(.v)(k, t, Bo) (D.7b) 
t = 0  

N O M E N C L A T U R E  

E(k, o~) 
~0(, o)) 
E(k, o)) 
B(k, o)) 
D(k, o)) 
H0(, ,o) 
Bo 
Ao 
p(k, o)), j(k, o)) 
~0(, o~), ~(k, o)) 
~(k, o), Bo) 
v(k, ~o, Bo) 
a~ ,  o~, Bo) = 
{(k, co, Bo) 
o(k, o), Bo) 
a(k, co, Bo) 

electric field intensity 
electric field in absence of plasma particles, 
electric field due to the plasma particles ( =  E -- ~;) 
magnetic induction 
electric induction 
magnetic field strength 
constant external magnetic field 
vector potential corresponding to Bo 
charge and current densities due to the plasma particles 
charge and current densities of the external agency 
dielectric tensor of the plasma medium in the presence of  B0 
diamagnetic tensor 
~(k, co, Bo) -- 1, electric polarizability tensor 
magnetic polarizability tensor 
ordinary conductivity tensor 
external conductivity tensor 
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D(k, co, Bo) = 

A 

(2V, G" 
R(r, t) 
U 
R(k, co) ---- 

W(r ,  t )  

W(k, co) 

Xi ~ Pi , Vi 

~ i  ~-- 
X~,, P~-, V~- 
{Aq}, {Eq} 

p k ~  = 
k 0 ( t )  ---- 

R~o(t) = 
a ~ o ( t )  = 

jk'(t), Jk'(t) 

I2o 

~ p 

H o 
H / 

Z 

P(~i)(k, t, B0) = 
P(i~)(k, t, B0) = 
Q(ei)(k t, Bo) = 
Q(.?)(k, t, Bo) = 
a O a )  

n~T -- r co, Bo), dispersion tensor, where T = q -- kk is the 
transverse projection tensor (k being the unit vector in the direction 
of k) and n ~- kc/m the index of refraction 
n~T -- 1, = vacuum wave operator (value of D in vacuum) 
�89 + crY), Hermitian part of cr 
�89 -- crt), Anti-Hermitian part of cr 
real and imaginary parts of o 
dissipated power per unit volume of plasma 
total energy absorbed by the plasma 
E*(k, co) �9 o(k, co, B0) �9 E(k, co) corresponding spectral energy 
density 
�89 t) + (1/2/z0) B2(r, t), field energy density 
�89 , co). E(k, co) + (i/2/z0)B*(k, co). B(k, co), energy content 
in a certain domain of (k, oJ)-space for a single mode 
coordinate, momentum, and velocity of ith electron 
[1 - (v?lc2)] -112 
coordinate, momentum, and velocity o f j th  ion 
field coordinates and momenta 

I kth Fourier components of the micro- 
e ~ e x p - - i k . x ~ ( t )  scopic electron charge and current 
e Z~ v~ exp --ik �9 xi(t)] densities of the system in equilibrium. 

Each electron carries charge e = - - l e l  
I kth Fourier components of the micro- 

- -Ze  ~j  exp --ik �9 X~-(t) scopic ion charge and current densities 
- - Z e ~ .  s Vj exp ik �9 Xs(t)} of the system in equilibrium. Each ion 

! carries charge ZI e l 
perturbations in the microscopic electron and ion current densities 
due to the presence of the small external vector potential agency 
A(r, t) ----- (1/L 3) Ak(t) exp i k .  r 
Liouville distribution function = ~2 ~ -r D' 
macrocanonical distribution function characterizing the equi- 
librium state of the system in the infinite past 
small perturbation due to ~, 
Hamiltonian of equilibrium system which includes interaction 
Hamiltonian for the interaction between the system and the small 
external perturbing agency/~ 
f dFR(...) s ~ expectation value of any quantity over the equi- 
librium ensemble (dr R is an element of hypervolume in T-phase 
space) 
I drR exp(--fl H~ 
(1/L~)@k~ R~ ~ Electron-ion charge-density correlation 
(1/L~)(Rk~ pOk(O)}O function 
(1/L~)(jg~(t) J_~176 Electron-ion current-density correlation 
(1/L~)(J~(t)j~ ~ tensors 
two-particle distribution function 
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F(1) 
g(I x2 - -  xl  l) = 
N 

no 
/3-1 

O) 0 

,Qo ~--- 
~Qc 

one-par t ic le  d is t r ibut ion  funct ion 
[G(12)/F(1)F(2)] - -  1, pa i r  corre la t ion  funct ion 
to ta l  number  o f  electron in volume L z 
equi l ibr ium densi ty (of  electrons) 
t empera ture  (in energy units) 
(noe2/meo)l/~, equi l ibr ium electron p l a sma  frequency 
I e IBo/m, electron f requency 

(Eo/flnoe~)l/2, Debye  length 
(noZe2/M%)ll 2, equi l ib r ium ion p l a sma  frequency 
ZeBo/M, ion cyclot ron frequency 
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